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PREFACE ‘.

- “.

This report describes the development of a new approach to modeling yj

I:,

turbulent flow. Heat transfer in a fluid is also addressed. This effort is in Eﬁ
“

response to an initiative from Kirtland Air Force Base calling for novel methods >
of modeling incompressible turbulent flow in convectively cooled systems. The :~
b

approach taken has been to derive a Hamiltonian which. preserves all of the E~
)"\i

physics contained in the Navier-Stokes equation, and to diagonalize this £l
Hamiltonian (i.e., transform the variables to variables which are preserved with 8
S

respect to the Hamiltonian). This Hamiltonian can be used as the starting point E’
)

for a number of different calculations. For example, it can be used to obtain a i.
partition function that will be used to describe the statistical properties of a t.
)

turbulent system. Indeed, this is an approach favored by the author. The g
-~
Hemiltonian can also be used as the basis of the newer class of calculations: 4
S

referred to as "Renormalization Group" and "Chaos" descriptions. Hence, it may §
a3

be used in models which are sometimes referred to as “deterministic” as well as Q
Ay
those which are known as "probabilistic.” This is natural, since the N
Hamiltonian itself does contain the same physitcs as the Navier-Stokes equation. ;f'
o

~~

Rationale v
A

The rationale for the adopted approach is that it has worked well in other '
areas of physics which share with turbulence the properties of nonlinearity and ;E
a large nuaber of degrees of freedom. These are the key features of what are ;5
known as many-body systems. Examples of systems in which the field theory or 5
sany-body approsch has proved extremely useful are nuclear physics, high-energy E:
physics, quantum-electrodynamics, and condensed matter physics. In all of these Et
N
D!

h

...... AR e e e e e e
T i o e T e

>



fields, the Hamiltonian is separated into the sum of a linear, basis part, and a
noniinear, "perturbing” part. Solutions for the full, exact system are
expressed in terms of integrals involving solutions to the linearized system.
Usually this involves some form of perturbation theory, which immediately raises
the question of how rapidly a perturbation series will converge, or even whether
it will converge at all. This is especially true of turbulent flow, in which
closure of equations involving moment expansions of the velocity components is a
common problem. In the above areas, the representation of the complicated
integrals which arise in perturbation series by simple diagrams has been a great
aid in summing perturbation series, sometimes to infinite order. This has
worked even in cases in which the series converges very slowly, or even
diverges. The Hamiltonian degcribed in this report has pérturbations which go
as the Mach number, and so perturbation expaﬁsions are expeéted to converge well

for subsonic flow.

The usefulness of diagrams to represent complicated integfals.goes beyond
its great simplification of a bookkeeping function. The diagrams have a
psychological appeal that aids the physical intuition of the theoretician in his
formulation of a particular calculation involving interactions between various
degrees of freedom of the system (e.g., fluid elements, or normal modes of the
linearized system). In the above fields, the various degrees of freedom of the
system are throught of as particles, and interactions are described in terms of
scattering svents between partic]cs. For example, an oscillation of a sound
field at a particular frequency may be regarded as a phonon. This viewpoint
gives a deeper meaning to the term many-body system. We see then that a

sany~-body description of a problem is helpful in performing diagram calculations

of perturbation expansions and highlights parallels with other systems which have

*y % TR DT LA

oo o Jo e




been extensively analyzed. Furthermore, it provides a means of making a generic

analysis, since calculations are made in terms of the normal modes of the
linearized system, without actually specifying explicitly what those modes are.
The boundary conditions and explicit solutions are included at the end of a
geporic calculation. This feature may facilitate comparisons of the behavior of

systems with different geometries and flow conditions.

OQverview
The various aspects of treatment of a system based on field theory are
shown in block form in Figure 1. Most calculations begin with the full

Hamiltonian, H, as a starting point. The Hanilfonian is ekpressed in terms of

fields which are the solutions‘to the partial differential equation of.interest,

in this case the Navier-Stokes and heat budget equations; hence the na-e‘fie1d
theory. Note that at the outset field theory gives a generic description. The
fields are the wavefunctions, or solutions to the partial differential equation;

- calculations are done in terms of these wavefunctions without explicitly solving
for them. Many calculations can be done in terms of a Poisson bracket (P.B.)
formulation. Poisson bracket calculations have the advantage of being
independent of a particular coordinate system, and are very powerful. The above
mentioned many-body systems are all quantum systems, and the analogous

equations to P.B. relations in those systems are commutator relations.

It is emphasized that the formulation described in this report is entirely
classical. At no point is a quantum description used. Although the formulation
closely parallels field theory descriptions of quantum systems, such as the use
of Poisson brackets instead of commutators, the integrity of a fully classical
description is preserved throughout, and leads to significant variances from the

form of gquantum calculations.

[3}
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Often the initial wavefunctions and related fields known as conjugate

momenta (denoted by ¥ and x in Figure 1) are transformed to new field variables
_which are said to diagnonalize the Hamiltonian. In quantum systems these new
variabies become creation and annihilation operators. In the present
formulation, they are simply Fourier coefficients, and are represented by n and
¢ in Figure 1. Poisson bracket calculations can be made in terms of the
diagonalized fields as well as the initial fields. In many cases calculations

are easier to perform in terms of the new diagonalized field variables.

Using the Poisson bracket relations, an equation of motion for any field
variable can be derived from the Hamiltonian. Many calculations are based on
these Hamiltonian equations of motion, which are fully equivalent to the origin
partial d1fferential ‘equation (e.g., Navier-Stokes equation) to be so1ved An
alternative, an extremely powerful procedure, is to find the Green's function, G,
corresponding to H. If the initial partial differential equation is thought of

as an operator, 0, operating on the field variables, ¥, then G plays the role of

the inverse operator to 0. The Green's function G to the full Hamiltonian, H,
can be derived from a perturbation expansion about the Green's function G° to
the linearized problem. Go is easily derived from the linearized Hamiltonian,
Ho' so that a procedure for solving a compliex problem can be built up
systematically beginning with the solution to a simpler problem. Green's
functions are central quantities in field theory. From them the densities of
states, densities of excitations, transition probabilities, lifetimes of
excitations, dispersion relations, total energy, equation of state, and

partition function can be derived.

(5]
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Benefits : 9
One of the halimarks of the field theory appfoach is that the development of

the entire theory is completely systematic, once the true starting point, the

development of a functional L known as the Lagrangian (from which H can easily ' :

be derived) has been attained. Thus theoreticians skilled in field theory will

know immediately how to perform relevant calculations similar to those done in

quantum systems, given the appropriate forms for L and H. Novices need not

learn quantum field theory to perform calculations. They can begin at once with

the rules for drawing and summing diagrams. Indeed, there is a modern trend

toward teaching quantum field theory beginning with diagrams, without any .

reference to a Lagrahgian, or a deep discussion of the theory. Hence many-body

calcu1at%ons can be made accessible to a wide community. This is in keeping

with the goal of the research described in this report: to facilitate accurate . N

calculations of the properties of real turbulent flow fields in practical

[

systems.

Notwithstanding the main goal of a practical calculational tool, it is worth
noting that the Lagrangian can be analyzed to obtain a deeper insight into both
the properties of a many-body system and the character of the theory. Given the
Lagrangian, the stress-energy tensor, W (the stress-energy tensor is usually

denoted by T in quantum field theory), can be derived; and the symmetry

KA FDEEEY. k)

properties of L and W can be analyzed to obtain all the conservation laws for
the system. Examples in fluid mechanics are the conservation of mass, energy,
and momentum. Note that these conservation laws are not postulated in addition

to the Navier-Stokes equation, but can be systematically derived directly from

‘ “.‘“ ""_-.“’IL‘I’ ), 2

T,b
o

L, i.e., a collection of initial postulates is not needed to describe the
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system, only the initial Lagrangian and a systesatic procedure for developing

the theory. This feature gives the theory a strong foundation.

Equations of motion for the fields can be derived froi the Lagrangian by
postulating that the variation in the functional L will be a minimum, and that
- the fields are fixed at the boundaries. Then integration by parts and the
calculus of variations lead tb Euler-Lagrange equations of motion (see Appendix
A). Hence the true starting point for the development of a field theory should
be the correct formulation of the Lagrangian. This task has been accomplished

in the program and is the most important result of the effort.

The value of deriving a Lagrangian for fluid motion has tong been
recognized, and there have been several previous attempts at £his task. Those
efforts were largely unsuccessful, primarily because of the difficulty involved
in accounting for dissipation, but also because of the way in which the presshre
gradient term was treated. The present theory, which we now summarize, departs

from earlier efforts in both respects.

Summar

The technical description is divided into three parts, which follow. In
Part I, the Lagrangian is presented and an analysis is made of the quadratic
terms, which correspond to the linear (noninteracting) system. The Lagrangian
is expressed in terms of the scalar and solenoidal velocity potentials, ¥ and
A . rather than directly in terms of the velocity. This approach highlights the
natural symmetries of the system and brings in the pressure gradient term
without introducing an extra field. Velocity is accounted for by introducing

v adjoint fields for the velocity potential. These adjoint fields would grow

rather than damp with time if they were complex conjugates of the initial

(7]
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fields. To avoid this difficulty, the adjoint fields may be considered to be

hypercomsplex.

It should be noted that the innovation of dsing hypercomplex adjoint fields
to describe terms of odd order in the time and/or spatial derivatives of an
equation of motion is applicable to the solution of a wide class of partial
differential equations, including equations for passive scalars and many other

dissipative systeas.

Equations of motion for the velocity potential are derived using Euler-
Lagrange equations, and found to correspond to established results for the
Tinearized problem. The continuum mechanics formalism is extended to derive the
Hamiltonian and Poisson brackeg relations, as wol1.as the stress-energy tensor.
At each step equations of motion are generated.aneu and compared to the initial
equations to check for internal consistency. The Hsmiltonian is then Fourier
transformed and diagonalized. Finally, Green's functions for the system are

derived.

Part lI explores some of the consequénces of including the nonlinear terms
{(which correspond to the advective term and higher-order parts of the pressure
gradient term in the Navier-Stokes equation). One advantage of the development
is that the perturbation terms scale as the Mach number, rather than as the
Reynolds number, as is the case in earlier works. However, since the advective
term is of second order in the velocity, the corresponding terms in the
Lagrangian are of third order in the fields. This immediately causes a break-
down of phase invariance, a problem which does not arise in quantum field

theory. This may mean that the Lagrangian must be transformed to new variables.

(8]
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The discussion in Part II is based on terms of the Fourier-transformed
fields. These fields are further transformed to make contact with various
calculations made on such critical phenomena as superfluidity and
supesrconductivity. Modified equations of motion are also derived for the
original Fourier-transformed variables, and comparisons are made with the

equations for various critical systems.

In Part 111 procedures for naking_diagran calculations are indicated and a
simple illustration of a diagram calculation is given. An extensivé
renormalization calculation of the effective viscogity, due to John Erdei, is
also presented. Next a procedure for deriving Lagrangians corresponding to
equations of motion for passive scalars is discussed, with an extensive example
of the heat budget equation. Justifications for several lengthy procedural

steps are given in the Appendices.

Parts I, II, and III are each written as self-contained works, complete with

their own references for convenience.
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MANY-BODY TREATMENT OF NAVIER-STOKES FLUIDS
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PART I, BASIC FORMULATION
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1. INTRODUCTION

Flowfields of practical importance are usually hard-driven, nonlinear
systems of great complexity that are far from their final relaxed state which
we term equilibrium. Traditional approaches to describing such systems yield
diminished results and are nof ampenable to application to a variety of systems
possessing diverse boundary conditions. By contrast, Many-Body Theory is a
description of a complex system which has proved quite useful in a variety of

areas that include strongly fluctuating quantities.

Experimental aspects of turbu1ent flow, such as the slow decay of
large-scale structures under appropr?ate operating conditions,1 the bifurcation
and quasiperiodic behavior of characteristic modes preceding turbulent
.behavior,z and the onset of turbulence at critical Reynolds nunbers,3 are
reminiscent of critical phenomena. A comparison between turbulence and critical
systems would be greatly augmented by the use of a Many-B8ody formalism. It
would be especially useful for semiquantitative calculations of scaling

behavior.

A Lagrangian/Hamiltonian formalism has been developed for a single-
component, viscous, subsonic flow in three dimensions. These functions will
describe the full Navier-Stokes equation without approximation. Results include
the eigenfunctions of the linearized system implicitly. Only the fundamental
bracket relations are required. Poisson bracket equations are independent of
coordinate systens.‘ Results can be applied to various boundary conditions by

explicitly inserting the particular eigenfunctions for those conditions.

(11]
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Since the Hamiltonian and the Poisson brackets can be shown to be -

canonically invariant, the initial basis functions may readily be transformed
to other variables more suitable to calculation. Finally, an approach based on
Many-Body techniques may make contact with the vast literature on field theory.

In this way, many useful results may be obtained by a relatively small effort.

Much of the early work on field theoretical calculations concerning fluid
mechanics was prior to a maturation in field theory and is expressed in a

sophisticated format which cannot readily be di;seninated to a broad community.

-,
Attempts at applying'diagrannatic techniques borrowed from quantum field theory SE
to turbulence in incompressible flow have been made by.wy1d,5 Lee.6 Edwards,7 EE
Kawasaki,a’g Martin, et a1.1° and Gledzer and Monin.11 Except for Kawasaki, who g?
used the Lagrangian equation as a model, all of these authors'simp1y made Ei
perturbation expansions directly from the Navier-Stokes equations, including the E?

e

entire pressure gradient term with the advective term. NO systematic .
development from Poisson brackets was considered; ratﬁar intuition was used to
renormalize perturbation series that began with the Reynolds number as an

expansion parameter. It is not surprising that these expansions tended to

become intractable after the inclusion of the fourth-order term. While

demonstrating that the application of field theory to fluid mechanics is a

plausible calculation, and providing useful bases for comparison, this work did

not follow a systematic development based on a canonical formulation of the

governing partial differential (Navier-Stokes) equation, as is standard in field

theory.

A Lagrangian density corresponding to the Navier-Stokes equation12'13

has
been described in earlier work. However, this Lagrangian (expressed in terms of .

the velocity itself, rather than its potential) is developed from a Lagrangian

(2]
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corresponding to sound waves in a Lagrangian coordinate system, augmented by
continuity equations as constraints. Viscous damping is brought in by "posits”

rather than derived directly from a term in the Lagrangian.

There are many ways of constructing the Lagrangian density upon which the
Poisson bracket relations are based. Several different Lagrangians for Eulerian
flow have been described by various authors.14 Most of these are expressed
directly in terms of the velocity and pressure. The resulting formalisms are
awkward. Moreover, they avoid the truculent dissipative term. The Lagrangian
density described below is equivalent to the full Navier-Stokes equation for
subsonic flow and is éxpressed in terms of the scalar potential function and
the solenoidal stream function. This is a more natural approach, as if
implicitly couples the velocity and pressure and nicely separates potential flow

from rotational flow. In addition, the symmetries and transformation properties

of the system are more apparent using this formalisam.

We begin our formalism with a fluid density p, a scalar potential ¥, and a
solenoidal potential, 4. Since the dissipative term in the Navier-Stokes
equation is of even order in the space and time derivatives, while the other
terms are of odd order, it is necessary to invoke adjoint fields. This is done
by expressing the Lagrangian density in terms of products of new velocity poten-
tials and their adjoint fields, and then expressing ¥ and 4 as the sum of these
fields. This procedure requires that the "scalar” velocity potentials and their
adjoint fields become pseudo-scalars in four spaces and that the "vector"
potentials and their adjoint fields become axjal vectors. It would be nota-

tionally simpler to work with the complex conjugates of the potential fields

rather than with the true adjoint fields. This procedure would require that we




express odd-order derivatives of ¥ and A in terms of the differences of the

corresponding derivatives of the new potential fields and their adjoint fields,

oW o o W ]

rather thanAtheir suns.'

Expressions for new variables are obtained on the basis of the symmetry

s R EY T 8 O

properties of the Lagrangian. The Poisson bracket relations for the symmetry-

generating variables are also exsmined. It iS not necessary to use a matrix

.formalism to obtain the diagonalization. As a corollary, expressions for the

’ & .

conserved currents of the system are obtained, and the key continuity equations N

are again generated. This work solidifies the basis for the formalism,

2. NAVIER-STOKES LAGRANGIAN

We wish to solve the Navier-Stokes equation for an isothermal, single-

component fluid with constant kinematic viscosity, v:
\'¢+v-vv+viva-ov-v+%w-F/p+r/p , (2.1)

where P is the pressure, p is the fluid density, and

r
Ds¢/o+ v . (2.2)
To do so, we construct the appropriate Lagrangian, L, in terms of fields for the j
*
velocity potential. L is an integral over a Lagrangian density./f: -
B
L = [dtdsrp (2.3) e
We express v in terms of a scalar potential field ¥ and a solenoid potential '
field 4 : NG
v =9+ Wn4g, (2.4) -
-
>
(4]
~
>N
.
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with
A=A+A (2.5)
, and
Tay+y, (2.6)
where ~ denotes the hypercomplex adjoint. We make the approximation
e 1 2 1 &2
Ps-p!-ip[lVY|-—c—2Y]+Po, (2.7)
where Po is a constant. Higher-order approximations for P may be obtained by
adding correction terms to Equation (2.7). Denoting the speed of sound by c,
the required Lagrangian density is given by
.£(*l* ’ A' A ) =£*’£A’£I’£NL+£P [4 (2'8)
where .
c2 2 1.,2 72 vz- - 1 -
258, = W - WY T - VR §) - PN+ 2w+ B)e, (2.9)
cz L . 1 2 - ° 1 -
zp—ﬂA = AsA + SV(AY <VxVxA - VxVxAy <A) + S(A + A)B, (2.10)
cz 1 L] : - -
8;-11 =3 (’ro* + Wo)(VxA =~ UxXA) (W - W)
+%(7°&+iy°)(m - xA)+ (VXA - WxA), (2.11)
cz ' ° ] - -
ap_'ENL = (70* + Wo) (Y - W)-( - W) , (2.12)
and
| P
<:2 . = =12 1 ¢ =2
25 Ly = (v ¥+ W) [wn - vl ] Tt (2.13)
{15)
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In Equation (2.9), we let

F=-W (2.14)
and

em-U0/p . (2.15)
Similarly, we let

B = (WxT)/p . (2.16)

1& describes the potential velocity field,«eA describes the solenoidal
velocity field, and 1& describes the interaction between these two fields due to
the advective term in the ﬁavier-Stokes equation. The nonlinearity in the
Navier-étokes equation is contained in 1& and jkL and in correction terms to

Equation (2.7).

2.1 Equations of Motion
The Euler-Lagrange equations of motion for ¥, ;, A, and A are obtained by

minimizing L with respect to these fields through the calculus of variations,
using integration by parts (see Appendix A). These equations may then be used
in conjunction with Equations (2.4) through (2.6) to obtain an equation of
motion for v. Since the potential field equations will be of second order in
time, the resulting equation must be integrated with respect to time to regain
Equation (2.1). Calculations based on /will be made by treating '£I' '£NL and
the nonlinear terms in the series approximation for P as perturbations about the
Tinear term in 1; and 1&. In general the expansion parameters should go roughly
as %(v/c), so the series should converge rapidly for subsonic flow. As the
development of the formalism proceeds, the formalism will take on a structure

that closely parallels that of quantum field theory. Nevertheless, the system

(16)]
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remains completely classical, as explained in Appendix B. We begin by

investigating the linear Lagrangian density -£°, where
£, -£* +.£A . (2.17)
variation of ¥ in '£0 gives

v - Dvovzi - vy = -;'e . (2.18)

A corresponding variation of ¥ in £y gives

Ve ov?éyo -ty - de . (2.19)
Variation of A in 2, yields

A + vy Vo . 3 . (2.20)
while variation of A in £° results in

A - vixhy = %a ) (2.21)

These results are in agreement with those of other authors.(15:16) .0 oo enta

conjugate to ¥, ;, A, and A are respectively:

* - 2 1 2~ \
LA ala/av —chz(* + 0V ,), (2.22)
- 2 - -‘2 . - 1 2
Ks aﬂo/av 2c2“ §°"o' ¥), (2.23)
° - & - 1 -
p e afo/aA -9—2c2(A ?mevo). (2.24)
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and

LA+ -v'y UxUxA) .

P = a£°/aA = 2(

2.2 Hamiltonian

The Hamiltonian density corresponding to ﬁ*, J/* is given by

-zw

€l

J/,,,-m‘ni

. ;‘c’—z[&’ + 29w - 1 + B)e]

2¢ P

Similarily, the Hamiltonian density J/A corresponding t:c»ﬁA i

given by

. 2
t‘i’p.A"ﬁ'A-ﬁA

= 2| & - l(A + 3)8]
2c2|: 2 '

2 2

- £ (——p + -viVxAv ye(3€ =P -
2¢2

Né—-l

The Hamiltonian equations of motion for ¢, m, ;. and & are

2

¥ o= SH/6m = £ 1+ Eoyovzw,

o |6

7w -oH/ow = (- Joviey_ + 2% + Loy,
2 2 e 2

(18]

;(,". Pl ".'_-f~(\f*l'~\ = ~r~f\f.-f -»\.r \'#‘ T o

2c? 12— 2_ '.. -
- £ [(—9— " g DY) ¢ 07,9%) + cPvw - Jw + u:)e:l :

i -
'YOVXVxA) - E(A + A)B] .

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

o = %
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¥ = SH/OW = 3%—1: - %ovzwo , (2.32) |
and ]
9
L.

- -
k= -on/0h = —E5(1 0y V3§ + 2Py + 1e). (2.33) 3

2c ° ' A

For the vector potential fields we find .
2 2c2- 1
A = 5H/6p = T—p - Evyovwa . (2.34) =

P = - SH/BA = ;5.‘; [viVxAyo +8 ] (2.35) 5
l-

k.

..

A = oH/6p = 2%, Lowxndy (2.36) :

P="P "2 o’ ‘ <

- and "
P = - SH/BA = —25 [v'rOVxVxA -8 . -+ (2.37) i)
4c -4
v
Differentiating Equation (2.30) with respect to time and then using Equation ~
-~
(2.33) yields Equation (2.18), as it should. Similarly, differentiating .~
Equation (2.32) with respect to time and then using Equation (2.31) gives ,\
Equation (2.19). We now assert that (see Appendix C)
sy W- WY, (2.38) C-'

4
. . . 2
Y=y ¥ -y, . (2.39) 3

&

o,

4

. i s “

A =v1A-A, - (2.40) e

A Y
N

Y

~
[19] 3
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and

V4= 7, %A - Vxhy, .
Then, adding Equations (2.18) and (2.19), we obtain
§ - ovly - 2Py -
Adding Equation (2.20) and (2.21), we find

A + vix¥xAd = B

2.3 Nonlinear Terms

Assuming the gauge equation

VA =0 ,

(2.41)

(2.42)

(2.43)

-(2.44)

the addition of the second expression in.ﬁI to.£0 does not affect Equations

(2.20) and (2.21), but adds the term

2 oat[(VxA UxA)+ (XA - UxA)]

to both Equation (2.13) and Equation (2.19). The corresponding change in

Equation (2.40) is

3
3t TX A %4)

The addition of LNL to LW adds the terms

. = 2 2-
AR NN AY
on the left-hand side of Equation (2.18) and

- . s 1 . : -
(W - To)e (v, W+ Wy, ) + F(r ¥ + by ) (Vo - )

(20]
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on the left-hand side of Equation (2.19). The corresponding change in Equation

e e E e

(2.42) is

(W - W) (7 W - Wy,)

‘o T -

= %a(vvovv)/at )

We may integrate Equations (2.42) and (2.43) with respect to time, and use

Equations (2.4), (2.15), and (2.16) to obtain the linearized counterpart to

Equation (2.1).

The addition of the first expression in 1& to £; does not affect Equations

(2.20) and (2.21), but adds the terms

Yoz [(M - W1 (Th - D] 4 (1 W+ Wr) e (aa - W)

R

- to the left side of Equation (2.18) and the terms

A
3
y
; v L [(w: W) (k- D) | - (7T + By (B - W)
Y to the left side of Equation (2.19). The corresponding additions to Equation
X (2.42) are terms of the form
1 1. 1 .
: 2V (WA + oY (Vx q),
- ‘
i provided again that Equations (2.36) and (2.37) hold. As a check, we differ-
2 entiate Equation (2.1) with respect to time, and substitute in for v using the
b Equation (2.4). We make use of the linear approximation for the pressure
)
3 gradient term,
“ .
¢ kP + Vov = 0, (2.45)
)
\
[}
"
(21]
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to obtain the relations

W[4 + vIx9A'] - B = 0 ' (2.46)
and
V¥ - OV2¥ - 1§v2! N % %;(vv-vv) R %;(vuq ve) + g;(foV-VXIV) - €] = 0. (2.47)
[+

2.4 Poisson Bracket Relations

We wil] define Poisson brackets in terms of a variational derivative:

8X_ 8Y _ 8x_ Y ] ' (2.48)

[X.¥] = )1: [ s, om ~ om se.

where the fields ¢..are given by ¥, ¥ . A, and A and the n fields are their

conjugate momenta m, ¥, p, and p.

We have the usual relations

(o,(r), .j(r')] = [m,(r), ﬂj(r')] = 0. (2.49)

For the conjugate fields we write

(o, (r), ﬂj(r')]

c aij S(r-r'). (2.50)

For the scalar fields we have C = 1, but for the vector fields we have C = %, as

we shall show in Section 3.

Keeping in mind that our Poisson brackets are defined in terms of varia-

tional derivatives, the equations of motion expressed in terms of Poisson

brackets are in standard forn:11
aF/aoi = [F, ni] ' (2.51)
-aF/ani = [F, 'i] ' (2.52)
[22)
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Mo
and -
2 aF
F=(F, H] + 2t ’ (2.53) 2
. vl
for any variable F. We can check our formalism for consistency by using the "y
e
- relation (2.53) to retrieve our Equations of motion. With HA given by: -'f
P 2(:2 1 = 2c2- 1
H, = ==-p + SVIXTAY o | =P - vy _WXWVXA (2.54) N,
A 2c2 [/} 2 o p 2o o
P
E-.
we find -4
A = [A, HA]
7
2 e
= 2(A, pl |2 p - Luy wxoxa (2.55) oh
’ P 2"7To ¢ :
2c?- 1 ' ]
= -; P - EVYOVXVXA . (2.56) :‘:
(S
Y
. Similarly, recalling that our brackets are defined in terms of variational
derivatives, :::
. ' o
p= [pIHA] t‘
R
o [2c2 1 - 1 AT
= =—p + “VUXVXAY vy _[VxVxA, p] ~
2 2 P 2 o 20 i
c LA
“~
e
2«::2 1 - :
= -e?ay IxUx | “p + —VINIxAY (2.57)
s o p 2 o b
2
%
. Ly ‘
= —&zviVxZ . (2.58)
4c
;
N
M
"
)
1
(23] N
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With H, given by

Y%y e e )

2 - 2_ - -
H = £ [(z_c_“_ - —1-07 vzw) (3‘:—1r + lD'r Vzw) + czw Ny ] (2.59)
¥ 2c2 P 2’0 p 20
\
we have i
¥ = [9.H) ]
71: + oy v w) ziw n] ] (2.60)
2c2- 1 2
=S EDyoV ¥ . (2.61)
Similarly,
= [n.le .
2c? 12— 1
= -2 (—n-—ovw) Dn, V%] + ¢ Ve[, vw]]
2 2 p 2 o 2
Cc P
1.2 r2¢2 1. 2- 2.2 :
= 2. |- Loy ——ﬂ——OVW)*CVW] (2.62) -
2<=2 2 ] 2 (o} .
- £ (- %ovza-, . czvzi) (2.63) :
2¢ o w
.
in the absence of external forces. In the same manner we can reproduce the
equations of motion for E
1Y
A, p, ¥, and n. :
q
[24) N
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3. CONSERVED CURRENTS

G4

f"f- - s

The prediction of conserved currents on the basis of the symmetry of the
Lagrangian density £ is discussed in detail by Rounan18 and by Mandel and Shaw.19
Although their discussion is directed towards the quantum systems of particle
physics, all the arguments can be applied to-a classical system. Nothier's
theorem states that the invariance of the Lagrangian density with respect to a
symmetry transformation implies the existence of a conserved variable. Consider

a four-vector, f”, such that

au°fu = 0. (3.1)

Integrating Equation (3.1) over coordinate space, and making the identification

Fufdref (3.2)
yields
3
Foa- fa’g;;fi/axi . (3.3)
= - [dAf -0 . (3.4)

Consequently, if the variation of ./ with respect to some symmetry trans-
formation yields an equation of the form of Equation (3.1) for some four vector
fu, we are Jed to a conserved variable F. As shown in Mandel and Shaw}9 gauge

invariance, expressed by

g - eiel# '
(3.5)
¥ -G
leads to the conservation of the quantity
Jartmp - A% 1 =mp . (3.6)

(28]

-----------



A

The continuity equation for m is ,
m+Vej=0 (3.7) ;

4
with N
I

Javww-vw . (3.8) ;-

R

_vn'

Invariance with respect to the four-translation :;
25

- + 6x x' , v

8 "ER " T 2

. o

-~ ¥ (x' ) 3.9 P

W(Xu) ¥'( u) ‘ ( ) 3
A(x ) - A'(x') ’ d

u M g

leads to the conservation of the stress-energy tensors Tw and TA :‘
o

(see Appendix D). o
--
The general form of the elements of Tw is given by: ::'

3L [ s o

T:o N wbawv * zg Yoou £

. w —1- N z -2 . (3.10)
vpaw vo

This definition of Hw is a necessary extension of the stress tensors described

P -.' -’_ ." -"- '.. /- .-. A I;??-'—‘?

by Morse and Feshback16 and by Morse and Ingard15 if dissipation is to be

included in L. A similar definition will hold for HA. Explicit forms for the ;$
e

elements of the stress tensor are &
™o 2+ cZvw - L+ )| = H ; (3.11) S
n 2 2 e

2c .
-'\
!.\
A LR A IRt T, ) I S CREY

2c "
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e %
x4

o

RO
By
b
l~
T, = -Lz(m + V) = -LzP (3.13) N

2c 2c ‘ 4
?‘3:._

. -

1

Tay = = 2%¥, - etc- ; (3.18) A
and 4_
Tl oy @ - ) - @ b, - L ete.]. (3.15) W
e 2c2 0 T T XX XX Yy ‘22 x' X! 1 : )
N

The components of Tw satisfy the continuity relations %\

- | . R

) LS
H+Vel=o (3.16) N

and P+ YeW=20 . (3.17) -4
A0

where W is a 3x3 tensor containing the spatial parts of T*, known as the wave- N
. ::‘.

stress tensor. P
‘]

- We see that the continuity equation for the stress-energy tensor follows 4
]

Pl
directly from the form of our Lagrangian density, i.e., we can derive it from -:.
. -~

our Lagrangian; it does not represent a subsidiary condition on our formalism. :“:
Although '£o is invariant with respect to gauge transformations, the if'
nonlinear terms in our full Lagrangian density break gauge symmetry. Neither ;2~
."t_

the A nor the ¥ fields can be made to satisfy local gauge invariance in any Ry
simple or reasonable manner. However, the full Lagrangian density is preserved N
with respect to four-translations. ';i
. i.“-
o

The symmetries of the Lagrangian/Hamiltonian density are important not only -~

o

for generating additional equations of motion, but because they provide valuable ::ﬁ

-

clues and, in fact, a systematic procedure for examining the behavior of the ZE,
‘ L

system when it undergoes a change of state, e.g., from laminar to turbulent i
~

flowm, )
\ +
e

h 1
[27] ;
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Since the conserved variables may be derived from the symmetry properties of the
Lagrangian, their Poisson bracket relations with other variables offer clues to
the behavior of the system with respect to various sy-ietries. In particular,
if F is a conserved variable, and if there exist (possibly the same) variables

such that
[F(8), X] =Y (3.18)

with

<¥> £ 0,Y % 0, (3.19)

for some parameter 8 and a critical value of that parameter, Oc' then Equations
(3.18) and (3.19) signal a breaking of symmetry, usually associated with a change
in state, at ocl We seek such relations in an attempt to develop a theory of
coherent structures at the onset of turbulence. Consequently, it is of interest

to examine various Poisson bracket relations pertaining to conserved variables.

We have:
(w, 9] =-p% , (3.20)
(w, %) = o (3.21)
(m, x] = pr , (3.22)
(m, 7] = - pn . (3.23)
18,19

Equations (3.1) and (3.10) to (3.13) lead to the conservation of P in the form

P = [dr(nvy + 7] . (3.24)
The function P has the property that:
[F., P] = WF . (3.25)
From Equations (3.18) and (3.7) we see that if:
<> a2 <P - W 20 , (3.26)

then transiation symmetry, generated by P, will be broken.

(28]
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4. DIAGONALIZATION
We will now make linear transformations of the scalar potentials which will

diagonalize H_ in the absence of external driving forces. It will be helpful in !

v W
. performing the required algebra to define a frequency Wy s given by 1
uﬁ . ck? . %Dzk‘. (4.1) ;‘
| 5

for a mode with wavenumber k. We will ignore external driving forces in the .

. following discussion. N
N
We first expand ¢ and ¥ in terms of the normal modes of system. We Ej

~

express the normal modes as functions of their wavevectors k through the B
argument iker. We will assume 3 statioﬁary system, and express wk(t) in terms ;f
of the phases .
. i  t =
+ nk 4

Onk s e ’ (‘-2) -:

-iw  t -
- nk &)

Bnk " e ’ (4 3) .

iw, t .

+ {k :

e(k . e ’ (‘.4) :.
and “‘

-iw_t
- ¢k

e(k . e | (4.5) :
The scalar fields are expanded as -]

: . R
= - Kot = - -

¥ Z,/ZEV‘ %k * Mk , (4.86) I
Wk -
c o

- < - *ee - :

¥ = z/ﬁﬁ‘ (?ke{kuk + "kenk“k ) , (4.7) .

kK k ;

o~

)

N

(29] .




where we use the notation

0 (4.8)

x
k * Yx"a

The constant factor c/Vpuk is inserted into the definitions given by
Equations (4.6) and (4.7) to produce expressions for quantities of interest in
terss of the Fourier transformed fields that are compact and that highlight the

18-23

analogy with work in other areas using second quantization. The system is

"quantized” only to the extent that we are using expansions in Equations (4.6)

and (4.7) in series rather than continuous transforms. Our fields are classical

fields, and we have not as yet introduced eigenvectors or operators.

Two species of functions, " and (k in the transformations given by
Equations (4.6) and (4.7) are needed because the equation of motion for ¥
contains terms that are of zero, first, and second order in time, as well as
teras that are of third order in the field strength. The presence of terms of
odd order in either the time or space derivatives or in the field strength
dictates the use of complex fields. If the equation of motion is genuinely of
second order with respect to time and the Lagrangian is expressed in terms of
complex fields, then two species are required for diagonaIization.zo This

18-20,24 1f the

occurs for example, in the description of a charged meson field.
equation of motion is of second order and only a real field is required in the
Lagrangian, then only one sbecies of function is required for diagonalization.

19,24-26 , cecond-

Examples are phonon fields and the neutral n meson fields.
order equation is equivalent to two first-order equations, so complex fields

with first-order equations of motion can be expressed in terms of a real field

T T T

vy e % YV
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obeying a second-order equation of motion-zo This occurs, for example, with , L

the Schrodinger equation2°'23

and the diffusion equation.16 The equation N
of motion for the A fields is similar in form to the latter two cases, and we .
will need only one species of function to diagonalize HA' as we shall show )
below. :

We emphasize that Equations (4.6) to (4.8) show how the development may be
applied to any geometry. In the remainder of the discussion we will concentrate
on the functions *k‘t’ and ik(t) and their derivatives. This discussion will

be completely general. To apply the results to a given geometry, we need only “d

substitute the appropriate functions uk(ik-r) and uk(-ik-r). In the discussion,

whenever we refer to these functions explicitly, we will use the plane wave -

iker -iker - ~iker .
solutions ue and U Yl = ue . .
- 4.1 Scalar Potential :
Since !
e . &
v - oyovzw ~cv¥y =0 , (4.9) -
and
¥+ 000y - a0 (4.10) :
we have .
2 . 2 2.2
wnk + 1Dy°mnkk ck” =0 (4.11)
and N
2 . 2 2.2
”{k - 107°w(kk ck” =0 . (4.12) :
v
Equations (4.11) and (4.12) imply that M
¢
. 2 4
unk 2 w{k - 107°k (4.13) -
[31] ®
P
>*
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2 2.2 . 2
ufk +ck = 2(«)ck - 3107°k )Q(k '
or
2 2,2
w(k +ck” = 2uku(k
(32]

and -

2 _ o w4
wnk + xinyok = wk = u(k x1oyok

Note that
"nk "{k = C
so that substituting Equations (4.6) and (4.7) into the relation

A o= 2 0+ PR
o2 :

2 22\ » 2
Hy = E K“'nk vek )"k"k * (“’ck

assuming that

2,2 %
3 )ckck] /Zwk '

3 -
J d'r uk(r) uk,(r) = ak,k' '

i.e., that the uk are orthonormal.

We now rewrite Equation (4.11) in the form

2

@i

2,2 . 2
+ ck” = 2(«.)nk + ¥101°k )wnk ’

or

2 2,2
unk +Cck = Zwkwnk

Similarly, we may rewrite Equation (4.12) as

(4.

(4.

(a.

(4.

(4.

(4.

(4

(4.

\--'\ss'\"-'.'\

14)

15)

16)

L17)

18)

19)

20)

.21)

22)

a
v e
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Substituting Equations (4.20) and (4.22) into Equation (4.17), we obtain :
o,
at last 1
IS * A -
H“ a E (unknknk + u(k(k(k) , (4.23) ]
, 18,22,27 . , . . -
in standard form, : albeit with complex sigenfrequencies. It will often ™
- ."
be convenient to use the compact notation 1 ,
wir.t) = L o (t) u liker) (4.28) 4
k -
w(r.t) = ¥ ¥ (t) U (=iker) , (4.25) <
K k K
where "‘
¥ o= —S— % (¢ et + ne ) (4.26)
k  (pw) Kk Sk k'nk® ' U r
"
and .
- (] - ® 4 o
¥ =T %({8. . +n86 ) , (4.27) X
ko (pw) K Sk Kk nk -
The fields x and =« may also be expanded in a manner similar to ¥ and y:
n= E m (e (-iker) . (4.28) :
and ::
N o= E ® (thu liker) . (4.29) >
From the relations \.
;:n
_2__ k3 2— )‘f
K= (¢ + X0V &70) (4.30)
2c
e
and "
'.l
a2 (b - 50y ), (4.31) ¢
2c p
~
\.
N
..'
(33] [
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and Equations (4.6) and (4.7) we find

1 . 2 .
m(t) = sa(p/u)* [(1wnk - DY K I Op, = (Gug + xovokz)cie

and

- " . 2 - .
m(t) = g(p/wk)" [('""nk + ¥oy kIn 8, + (Gwg + xbvokz)(zezk]-

Now from Equation (4.14) note that
o - X0y K = ia = u, + WY KD
nk ) k ¢k o ‘

consequently Equations (4.31) and (4.32) may be simplified to
m (t) = i(pw) ¥/2c [nfe’ - ¢ 87,1
K Py konk T Sk

and

R (8) = i(pw ) ¥/2e (€88 - ™!

Equations (4.6), (4.7), (4.35), and (4.36) are the building block

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

expressions for the remaining development. We now have all the information we

* *
need to proceed. First expressions for the quantities Ny N (k' and (k

(which are independent of r and t) are obtained in terms of the original

fields:
* —_— = e -
N = k[fpwk/c ¥ * 2c/1prknk] enk .
. +
n li[prk/c ¥ - ZC/prkﬂk ] Gnk '

x . -
(E = 1i[v'xmk/c W * 2c/n'pmknk ] e(k

[34]
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3:: and
"
:,‘u‘ - (l_(= k[vak/c "’k 2¢/Vpw, pw, k] (k . (4.40)
)
3 Of course, we may also write
o8 ,
AR r—
Y * 1/,3 POy 2¢ -
i "k'z,/:"' A~ L L NUR (4.41)
o
3
[X)
ol S1(3 | P, o 2 - |Gt

: M zfd r[ S 4 "v’ﬁ’_k" enkuk N (4.42)
s

%
i
L2 Vow, _ I
ozl Falfdr ]| kg2 iley (4.43)
o k2 c o ke ko,
.;
Po
bl and
:"
O 1 (.3 Pey 2¢ + -

\ (-—fdr{—&--:——n]&u . (4.44)
“ kK 2 c 1,/5?.{ ¢k 'k

J\,:

-.r_ 4.2 Vector Potential
.-:f; The Hamiltonian for the A fields, H'A’ is already diagonalized, as can be
h!(:

A seen from the equation

¥ I S | (8.45)
x A ge?

e
/ .

3 in the absence of external forces. The A fields are expanded as follows:
e -
)
A= t = 2 o* 4.4

:b EAK( Ju, (r) Z oV2/p0 80" u (4.46)
0
b hd

. and
B¢,

) < - -
0 A = E A (£)T (r) = Z cv"l_/__k a:e kuk ' (4.47)
3 Y
N

Er,

% (36]
o

g
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where
iw_t
aak me 2 ' (4.
and
* -iw_t
Gak e a8 . (4.
From the equations of motion for A and A in the absence of external forces,
K + uy°Vxin =0 . (4.
and
A - vivnyo =0 (4.
we obtain the dispersion relation
iw = -vy_k> (4
ak [,) '
or '
w_, = vy k2 (4
ak 0 ' '
in the agreement with the well-known resu1ts.16
Substituting Equations (4.46), (4.47) in Equation (4.45), we find
*
Hy = E Yok &M% - (4.
We may also expand the momenta conjugate to the A fields:
P=1pltiylr) (4.
Kk
P =1p(tlulr) . (4.
k
Then, from the relations
P = -25 (A - vaxinvo) (4.

2c

(36]

S g0 a3, gt g
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52)

53)

54)

55)
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57)

P o
-y

TR

WPl N Ty N e 2
b <$—$$—5,"




and .

< p = —lz- (A + WY _VXVxA) (4.58)
2c B

we find, using Equations (4.46), (4.47), (4.52), and (4.53),

"""'2
Pe = i k/ac 'k eak (4.59) :
.
and
- . 1 * :
pk a - 1Vpuak/8c? .k eak . ) (4.60) :
The inverse transformations corresponding to H,are : o
lk = Vpuak/2cz Ak eak . '(4.61)
! * o Vow . /302 A e*
) ' 4.62
& = Vowy,/2c® A 8y ( ) N
Q
)
§
a = Wacz/pwak P Ok (4.63)
and 5
% = -8c%/ou by O], (4.64) (
W
"
We preserve the expression for “A in terms of the functions a:ak in standard
form, while maintaining Poisson bracket relations in the diagonal representation ]
similar to the ones commonly found in field theory. We recall that the comblex '
Vv’ :
first-order equations for the A fields (these fields are not explicitly of first ;
order, but clearly are equivalent to first-order equations) may be related to a <
real field that obeys a truly second-order equation of motion. Let this field

~
v
~
™~
.

'
™
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'k

be defined by the equations

A = oy + &k/iwak : (4.65)
and
| A =a -a/io, . (4.66)
where _
g +ol @ =0 . (4.67)
‘ Then ne‘have
R = oA ‘ . | (4.68)
and
ik = -iw_ A . | (4.69)

Using our dispersion relation for the vector fields,

W, =~ iyévkz . (4.70)

ak

and the relation

ITA, = - szk , (4.71)

we see that Equations (4.68) and (4.69) are equivalent to our equations of
motion for the vector fields. At the same time, Equation (4.67) is the equation
of motion for a harmonic oscillator with coordinate a . frequency Wk’ and

conjugate momentum pak given by

Pak * % . (4.72)

Consequently, we must have

L d
3 .
[akl akl] [le pkll = ak,k' [ (‘ 73)
(38)
l‘r'
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4
and ’ :j
° . ' ~
[ak,ak.] = [ak, ck,] =0 . (4.74)
) Equations (4.75) together with Equations (4.71) to (4.74) imply that
- = = 1 2
[Ak' pkl] = [Akl pkl] = Eak'kl ’ . ("15) t
and 3
A
[.:, 8l =98 L : (4.76) ’
-
as asserted following Equations (2.47). :
From Equations (3.48) to (3.51), (3.68) to (3.71), (2.45), and (2.46) we E}
obtain the relations ' £}
. . T . v
[x;. xJ.] = x5, xj] 0 | . (4.77) E
and 3
. vy
L} &
(x5, x51 = 18, ! (4.78) S
1
where the fields X; are given by M and (k. We may show this explicitly as ?:
follows: ;.
Ly
¥, n,1 = L2itd,, 7.1 - 2i(n,, ¥ 1) = i (4.79) ;
k’ k' 4 k' k' k' "k k. k' : -
-
and "
% L PP ez = . 3
[(k. (k.] = ‘(21[$k. "k'] - 21[Rk. wk.]) "‘Gk,k' . (4.80) 5
The factor i in Equation (4.78) is due to our use of Poisson brackets to describe ,#
classical fields rather than commmutators to describe quantum fields. ;f
K
[39] o
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4.3 Conserved Currents

We can define variables analogous to the number operators in quantum

mechanics. Because we have a classic system described by Poisson brackets, we

must introduce a factor of i in our definitions;
x-
Nn = E "k ® E ineme -

*
Ne = E R ® {;ickck '

and
N, = E Mo ® E ia A

With these definitions we aobtain the standard relations

(s Meed = = Mdger
x* *
[nnk' ﬂk.] = nkakkl ’
e Sierd =~ Gdr
: * *x
[n(k' (k' ] = (kakkl ’
(aier 2] = = b o
and
x *
(e’ %] = 300
With
H = H* + HA ’
where

H o o= * ,
v 7L kMt Yok

(40]

e . . -' ‘. w ----- "
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(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)
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and

Hy = )} DI ot N (4.92)

we can immediately obtain the time derivative of the diagonalized variables from

relations of the form

ik =[x, HJ . (4.93)
These relations are of a familiar form:
ﬁk = -iap e ﬁ: = iw k": . (4.94)

(k = -iu(k(k ’ (k = 1u(k{k '
and

ik =il o e ow i . (4.95)

We now look for variables that are conserved with respect to Ho° Some

immediate exa-ples are Nn, N(, N. and
; * *
" w)é(nknk - G (4.96)
and
* *
P Ek("k"k £ 608 (4.97)

5. GREEN'S FUNCTIONS

The Green's function Gu(rlr') is the solution to the equation

- (M
In Equation (5.1) we will assume that H

- u)Gu(rlr') = - 8(r-pr') . (5.1)
A is a scalar, as we have previously.
A1l of the basis Hamiltonians which we have discussed are given in terms of a

quadratic product of the field amplitudes, which are vectors. Thus far, we have




AU A L a 4%,

assumed that this product is a dot product, i.e.,
*
My~ [x> (5.2)
*
for any Hamiltonian Hj in terms of the appropriate fields x and x .

5.1 Derivations
Gu(rlr') is first expanded in terms of the eigenmodes of HA' as is commonly
done.16,23,28-31 Usually a linear expansion is made, but in anticipation that

since Gu is the inverse of H, it will be bilinear in the fields, we write

A

g (rir') = EE'Gkk,a:,e'ik'"'akeik" . (5.3)
8ubstituting.5quation (5.3) into Equation (5.1) we f--indz9

s(r - r') = E'G""'(@ ST SR WAL (5.4)

We will continue with this formulation. We could also express the
Hamiltonians in terms of the vector product, |x><x |, (See Appendix C), in which
case we would have an operator formulation. In that case the discussion would
parallel the dot product case, and all of the following treatment would apply.
Most of the earlier discussion would aiso be valid, but it would be necessary

to replace the Poisson brackets with commutators.

Since
* jke(pr'-
T aae (M) age - (5.5)
K
we must have
"]
kk'
G,, = —— . (5.6)
ki W
(42]
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Consequently,

1k-(r-r )
z""“

U"Uak

g (rlr) =

(5.

1)

Our expression for Gu is time independent. We may bring in the time dependence

of the Green's function through tﬁe relations

-iwt

'k - ake (5.8)
and
* * jwt' ’
'k - ake . (5.9{
Then we define the Fourier transform of Gu as
ik-(r-r )=iw(t-t')
G(r,tlr',t') = E"‘."e . (5.10)
2n W - W,
From Equation (5.5) we see that
— ~iw(t-t')
G(r,t|r',t") = —6‘52—-—"—1fdu - (5.11)
n Ww-w
ak
Now from Equation (4.54)
. 2
wak = 11°vk (5.12)

is purely imaginary, so the pole in Equation (5.11) is on the imaginary axis.

The contour integration gives, upon interchanging t and t',

2 )
G(r,t|r',t') = i8(r - r')e-vk (t-t')

=0, t <t

Performing the integration over w and integrating over

rep-r' (5.

, >t (5.

13)

14)
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in Equation (5.10) rather than summing over Kk gives

G(k,t-t') = G(k,T)

. * -Vk2T
= i) aa.e (5.15)
k

= dr G(r,tlr',t') . (5.16)

Proceeding similarly we may find the Green's function su(rlr') corresponding to

H*. su must satisfy the equation.
(Hy - u)su(rlr') = -§(r - r') . (5.17)
Assune1s'19 that su is of the form
"o n * i(ker-k'er') _ € * i(ker-k'er')
s,trir") EE[Skk.nk.nke Sk Skl @ (5.18)

Then, substituting Equation (5.18) into Equation (5.17), we find, from Equation

(4.23) and an argument parallel to that above, that

8
n kk '
S = (5.19)
kk' w wnk
and
8
¢ kk '
Sp , = —=—0 (5.20)
kk w u(k
Therefore we may write
= n - L - ( - ' ’
Syrlr) =8 (r - r) - s:(r =) (5.21)
My ¢ Co
- k 'k - Kk e1k-(r‘-r') (5.22)

K U-Unk w-u(k
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With

and

the contour integral gives

Sc(r,tlr',t')

From Equations (5.25) to (5.27)

s(r.t|r',t') = 6(47' r’)

sT(r, tlr',t")

{k

. 2
unk = ”k - 107°k

. 2
w K = wk + 107°k

-iwkT-Dsz

is(r - r')e

0, tc«<t',

2
2 -i8(r - P )e’”kT -0kt

=0, t>¢t'

and (4.15) we find

J b e
- + Ziuvook

’

The Fourier transform of su' S(r,tlr',t'), is then given by

s(r.tlrt,t') = a(1)S(r, t|r,t") - e(-r)s((r,tlr',t')

’

%*
j‘ [ M S ]dm JHKe(Fror) - a(t-t')
n W - U W+ Uck

go(r-r') 1 - 1 -iw(t-t')
2n fdw[u-wnk u+u.]°

t> t

t < t'

e-iu(t-t')

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)




......

Finally, we find

. s(k,7) = 8(1)s" (k. 1] ~ 8(-1)s%(k.T) (6.31)
= 1ank-1wkT-DkT , > ¢,
i r-Dsz
= - Z {kck e'% , et . (5.32)

5.2 Density of States

The: phase space volume 2 corresponding to a variable ¢ is given by
Q = [do dn - far . (5.33)
From Equations (4.6) to (4:8), (4.32), (4.39), (4.46), (4.57), (4.58), (4.64)
and (4.66) we see that

far -t . | (5.34)
K

By way of illustration, let us assume an isotropic system. Then we have
2
Y - anskde . (5.35)
k

We wish to convert the integral in k space to a frequency integral:

anskidk - 1D (w) dw . (5.36)

This implies that the density of states, 2 (w) is given by

D) = an | K2l /| dorak | . (5.37)
Thus we can find 17(w), once we have the appropriate dispersion relation. The
required relations are given in Equations (4.11), (4.12), (4.63), and (4.64).

An immediate complication arises from the fact that wnk and "(k are either

complex or pure imaginary for k £ 0, and w_,_ is pure imaginary. This means that

ak

the population of the corresponding states changes in time. Each value of k

(46]
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corresponds to a unique value of “nk’ w(k, and LA so the dispersion relations

define curves in the complex w plane. Let the real part of a frequency w be

denoted by ' and the imaginary part by w". Then we have32:
2 2 11/2

dw dw’ '’

k™| a * & . (5.38)
For the A fields we have the simple relation

W = @ = vk : (5.39)

ak . .
Consequently
2 3 -1.5 0.5
kS dk = 30 o do, . (5.40)

a 8
I1f we assume the existence of a cutoff frequency w,, we can normalize

Z%(w) to obtain

ﬂ(m)srg u’a‘ (5.41)
a 2 1.5 '
(A
m
For the scalar fields we have
u'k- chkz - XDkz (5.42)
and
" 2
uk = +iDk . (5.43)

In Equation (5.43) the + sign refers to the { modes and the - sign to the n

modes. From Equations (5.42) and (5.43) we find

2 2 2.2
w = |w = ¢k . 5.44
AN (5.44)
(47]
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Using Equations (5.38), (5.42), and (5.44) we find, with

WE Dw/2c2 (5.45)

and @ representing either wnor wc:

Dw) = xwz' 1 - w® . (5.46)

In the Timit
W << 1 (5.47)

we find

2

Dlw) ~ % (5.48)

We note from Equation (5.42) that D (w') has a maximum value w& given by

D (u' )- VZcZ/D . (5.49) -

This is because the contribution to w& from diffusion causes the w'(k) curve to

bend over at large k, and in fact to reach zero at a critical value of k given by
2
kc a 2¢/0 . (5.50)

If D is very small, we can make the rough approximation

W= @' ’ (5.51)
or
w'' -0 . (5.52)
(48]
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6. DISCUSSION

The approach taken in Sectjon 2 to handle the difficulties of dissipation
is related to the work of Morse, Feshback, and others}5 +16,33,34 and in fact, is
inspired by the earlier work of these authors. However, the treatment given
here varies from earlier work not only in that it treats a more compliicated
system, but in the diagonalization of H. Earlier authors separated H into a
conservative part that they diagonalized and a dissipative part that required
special rules for incorporation into the theory. In Section 4, the entire
Hani]tonian.is completely diagonalized, and dissfpation is incorporated directly
into a formalism that is similar to that of more familiar systems. This
approach is especially convenient for the derivation of Green'; functions. A
review of the papers cited abovg and other attempts to treatldissipation in a

Lagrangian theory is given by Dekker‘35

The diagonalized Hamiltonian for the scalar fields involves two species of
functions in the diagonal or N representation. In field theory,'thi;
corresponds to the presence of a hidden variable that is not explicitly present
in the equations of motion.w'z1 Usuaily this is a charge. Identifying this

variable for the scalar fields thus becomes a central problem.

[49]
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1. INTRODUCTION

The primary use of a field theory treatment for f1uid flow will stem from
the nature of the perturbation generated. The character of such perturbation
series is determined by the relationship between the interaction terms and the
basis Hamiltonian, Ho' In Part I, the bulk of the formalism for a many-body
treatment of subsonic Navier-Stokes fluids was developed, although the
discussion was confined to Ho. In the following text, the nonlinear terms in
the full Hamiltonian, H, are considered. The discussion will be directed
towards flows with low compressibility, so that the nonlinear terms arising from

pressure gradients will be ignored.

We have succeeded in describing coupling of the scalar and vector potential

modes. This is done by expanding H, in terms of the diagonalized fields, and

1
then constructing a linear transformation of those fields that yield a new
rediagonalization, given certain approximations. The new dispersion relations
have a non-zero threshold level if the vector and scalar fields are both
excited. Also, the analysis of mode coupling due to the nonlinear terms

in the Hamiltonian has been extended to examine several similarities with the

literature on critical behavior and suggest a connection with "deterministic

chaos."

2. MODE COUPLING

The perturbation Hamiltonians, H. and HNL' are now included along with Ho

1
to form the total Hamiltonian H:

H = Ho + HI + HNL . (2.1)

The objective is to diagonalize H. The Hamiltonian density, A& is easily

obtained from l&; given in Equations (2.8) to (2.12) of Part I. We have
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J& = Jﬁ +1J& , (2.2)

with

#, - ;:—2 (7 + ¥7,) (W - W)= (VA - Wxk) (2.3)
and

& —:c-—z(vo& + &7 ) (TA - W) (VA -~ TA) . (2.4)

Equations (2.3) and (2.4) are expressed in terms of the time derivative of the
generalized coordinates rather than conjugate momenta for convenience. An
alternative form for Jﬁ and A& valid in the limit of constant vorticity is

discussed in Appendix E.

It will prove very convenient to use a compact notation in the remvining
discussion. The Fourier-transformed variables defined in Section 4 of Part I

are now expressed in the shorthand form

ne_ ¥’ .y

qnq qQ ’ (2.5)

kot _~iQeP +
8 e - ’ 2.6
nq nq L SdR ( )

* e1k-P -

6ak

L (2.7)

“"yA .: , etc. (2.8)

4

.;eakc'i
The use of the symbol i is not meant to convey a change from field variables to

operators, as in quantum mechanics; rather it is intended to emphasize that the

compressed notation includes Ypr Using the transformed version of the field

..................................

------
--------------------------------



variables given in Part I, Equations (4.2) through (4.7) and Equations (4.47)

. through (4.50), the following expressions are obtained:

WA - DA = iTcr2/pu ke(al + &) (2.9)
K
. < - + _
T+ W, ivog ;ggi [@nq (n M) * Weqllq = Q1+ (2.10)
LR TR S (A S TR I R (2.11)
q Voo,
m VZuak t+
Ay + 7, -w%-;—uuk+%) ' | S (2.12)

Throughout the discussion, frequent use will be made of the identity
a . .
f:g3r e PERK)F s sk . (2.13)

We will also take liberties with our summations, noting that they go from -N to

N with N large. It will be assumed that

1=Y=) , N>q (2.14)

K "y k+q

i.e., we assume that the dominant interactions occur at long wavelengths. We

begin with H1,
3
- H1Ifdl‘#1
-17°c
= - {Z kx (@, - a _)e q[ nq+k(nq+k q+k) + “(q+k((4*k q+k)]

t +
((q + (q nq - nq)/uak . (2.15)




We also have

3
H, = fd r#,
oY 3
Q 2¢ + +
[ _(nl -n)+w, (£ -C)]
= 15c2 kq PO« Yow_ nq P q {q a q

q

E[kxak-jxaja(k +j+q)+ kx.:~jxaj6(j -k +q)

+ kxak-jxaja(k -j+q)+ kxa{-jxn}’a(j +k -q)]

"2 reduces to
cy 3 '
H, = D} w_(n, -nf)+ae,_(c -¢hH

2 kq uak/;; nqg''q a {a''q a

o

°

. - 2Kke + . tqt
3[k (k + q)akai:a 2ke(k + q)af, m + ke (k + q)aEak*q]

t t o t
= |kea__(k + q)em - 2Kea) (K + q)em + kem (K + q)ea ]s
[ o o - Koty o+ kg -

Finally, consider HNL' which is given by

3
HaL = fd r

ipy 3
« —2 7S\ Rl td) T T
16c2 E,q(ra-) W‘"’nq‘"q Tq) * U¢qltq 7 fq]

(56]
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Y,
it on o+ ¢t ¢ -t ¢ -¢t n o -n_n -¢_ ¢
P*qQ P ptqQp p+q'p ptqp p*q p p+q P
« )]
>
sn__C,+ ¢ _ng - nt_nt -t (tent ¢tegt ntentn )
p+q p+q ptq P ptq p pPHq P p+q P P p*tq )
t -t - ¢t . ' 2.18 3
* $plpra ~ "plpeq ~ {pTpeq] (2.18) 3
2.1 Canonical Transformations :
HyL can be transformed to obtain more manageable expressions. The needed R
. ~
transformations are 3
: tat ‘ .
au - vial¥ , (2.19)

Be = Ut VIR | N
rJ
tot R

= U - v_._ ’ (2.20) i

g = uisl e :
+ t ot N
Bk,q * UkeqPkeq " v;_ak_ ’ (2.21) N

t ¢ !
d’k = k-(uktk - v_a_) ' (2.22) bl
kK k .

t t .t N

d'k = k-(uka K~ v_a_) . (2.23) .

k k b
t t .t ‘
4 = (k + q)e(u @ -v_8a__) ., (2.24) "

k+q k+q'k+q k+q k+q :

v

t t '

€q " (q "q * q (a ' (2.25)

c; . (; - ng * T (2.26) 2

q q D

dg=Cqrnl-mg-¢l (2.27) .

q q %
A

(57] 2
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+ + +
d =¢ +n_-n_-¢ , (2.28)
q q q q q
& 2un -¢)-vimt-¢H , (2.29) )
P PP P 5 p P
ot =ut(nt -¢hH) -v_n_-¢) . . (2.30)
p PP P P P P
and ot =ut . (nt, -¢t y-v_(n_-¢_) . (2.31)

P*q  p+q P+q  'P+q ota pra _ pea o

In Equations (2.19) to (2.21) and (2.29) to (2.31), as well as in the
following material, the transformed Hamiltonians will only b; equivalent to the
original Hamiltonians if the respective u's and v's are equal to one.
Unfortunately, if the transformations are to be canonical, the transformation N

functions must be chosen to satisfy

A

Boviar, "(2.32)
K
o',
ug -viar (2.33) |
q
’
and z
u2 - VE = 1 . (2.34) ~
P75 .

These requirements overdetermine the u's and v's. A compromise may be found

in which (letting j represent k, p, or q)

(2.35) )

U, =N, + ¢

J J 3

and f
v,=N, - € (2.36) X

J J J -

where Ry
. "

i

Nj > 1 (2.37) "
(58] N
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and -

€, << 1 (2.38)

in such a way that

Ne, =1 . (2.39)
The error for finite N is equal to 1/16N§ if the eigenvalues of the diagonalized
terms in the respective Hamiltonians are reduced by N§ for each j. In the
remainder of this treatment, difficulties with proper specifications for uj and

v, will be ignored.

J
Using Equations (2.29) and (2.31) Hy, may be rewritten as
H --—i-cbmw (g - %) + w0, (&, - ¢Hiel ¢ Ve@ @ — pe(p + q)
NS e pg M9 g carta T ol e’ pYa peg -
. - H3 + H‘ . (2.40)

Similarly, “2 may be expressed as

cY
0 1
H, = ] fw (. -nf) +o (¢ -¢Hlbt b ke(k + q)
2 °"‘-"‘q“’ak’/“_’; a9 F (a''q g~ keqk
. H5 + H6 R (2.41)

where the shorthand notation
. + . + - 2t
Ke(k + q)bk+qbk s ke(k + q)gk"‘ Bk d‘k*-qd‘k (2.42)

is used.

H1 is simplified through the change

-iy_ ¢

o t+ t . t
}2 Kk - . - d .d .4
!G;- I x"k .E) q [wq+k°q+kcq 1vq+k q+k q /wak (2.43)

H1 =
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where -

= oyop2 . (2.48)

Depending on the mean amplitude of the A and ¢ fields it will be convenient

to group the various terms in H as either

H= (Hn + H3 + HS) + (H( + H‘ + HB) + (HA + H1) (2.45)
or as
H = (f 1My + H‘) + (le-lw + HNL) + (MA + HZ) ' (2.46)
where f, and f, are fractions such that
' f1 + f2 = 1 (2.47)
and we define
n "% @M . (2.48)
H Z w(qucq . (2.49)
Consider the grouping given by Equation (2.45). We write this as
Hs Hn + Hr + Hs . (2.50)
We have
H Yiw t __1512_ - at t
s = L ak®k %K " 4/535;; kx(ak ai).gq(QQ+ch+kcq q+k q+k q)/w ] (2.51)
. E[waka;ak - ify (e - .é).gq(uQ+knch = Woudak) /9] (2.52)
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cy )
f
Ho =Y nin. + —2a_ (n -nt) I kk+qb’ b /e
rqnqqqe,/;u:nqqqk k+q k' “ak

icyo

- -nt + .53
s anq(nq na)g p(p + q)¢p,q¢pﬂupwp+q] (2.53)

-t )
7o(ng )Y kik + D Npyeq/Vak

= Y{w_nin_+ 9%
q qk

nGgq'q

o RN nh) I p(p + DNeoq’P90eq] (2.54)
qa P
and
H = Z[u e o o, (c - c*)z k(k + q)bT b, /0
. s q(qqq dga—q(qq a/k k+q k' “ak

icyo

- —0 - ot +
s w{q(cq ca)g p(p + q)¢p,,q¢pr’wpw?,q] (2.55)

t t - ¢t
= Ifgtitq * qqro(cq c_)E k(k + Qg fou,

q q
- i Yoo —
;gq Z pip + c:;)nwq upwp+q] . (2.56)

2.2 Emery Transformations

Decoupled fields are now obtained by applying canonical transformations to
Equations (2.48), (2.50), and (2.52) of a type originally due to Emery."2

HB is transformed by means of

I gq (wq’knch - ivq+knqu)/mq . (2.57)
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.2 s

wak = ivk" = '“ak. ' (2.58)

'k = pk + ifkyoJ_/wak ' (2.59)
k

al = gt + if v J /0 . (2.60)
.4 K k'o'k’ Tak
t +

al = g7 + if v J_/uw . (2.61)
K K k'o k ak . .

In Equation (2.54) we make use of Equation (2.52) and the fact that

Jt = -y, (2.62)

k k

~as can be seen from Equations (2.47) and (2.48). Using Equations (2.55) through

(2.57) in the relation »
= + : - at
Hp E[uak'k°k + if (8 .E)Jk ] (2.63)

we find, remembering that

Y18 =3YBJ (2.64)
£ oL Ak

(Since the sums go from ~-N to N), and that 7§ = ~1:
+ 2,2
Hg = E[”ak’k‘k el P ] . (2.65)

This shows that the normal modes corresponding to the vector potential in the

excited medium are dressed.

Hr is transformed in a similar manner. We rewrite Equation (2.53) as

. + ot s
H. E["nq"q"q + 9g75(nq na)[k(k + Qg - PR+ @) ] (2.66)

and make the transformation

nq = rq + gqrotk(k + q)Jba = ip(p + q)J_1/w ) (2.67)
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w3 N AT TN O RE, Q [Aadal

t =pt-g* - i * ’ .68 -
Q=" q 9 Yo lk(k + q)dbq ip(p + q)JN] /wnq (2.68) ¥
and "
t apt s g™ -3 * N
n rl + g v lkik + q)J,_ - ip(p + q)J¢_] /m"q . (2.69) ‘
. q q q q ,‘.
H
From Eqﬁations (2.49), (2.50), and (2.81), it follows that by
f = ‘»
qu Jp (2.70) N
q <
and ‘
Jm| - Jd— . . (2.71) :
q ]
F t ’ i - . *
urthermore, since gq unq, 4,
. *, % _ : , _
. 99/%nq * 9¢/%nq - (2.72) 3
. Using Equations (2.61) through {2.67) we find
= + 2 - 3
H. Z{wnq"qr‘q + gq[k(k + q)d,_ - ip(p + q)J¢_] :
q q q X
- * 1, .13 s
[k(k + q”bq ip(p + q)JM]/wan (2.73) \
~
Clearly, we may make a like transformation for Hs. To wit: f;
+ % S s
Hy = E[w{q(qfq * g% (%q camk(k + Q)dpg ~iP(P + )Yy )] :
3
* _ kS,
S = %q * qlolk(k * Ay = 1B + Qlggl /gy (2.74) R
t ast- K t - * . ]
<q 3 gqrolk( + q)qu ip(p + q)JN] /mcq ’ (2.75) 3
t 2 of ' t . * .
€q = Sq * Iqlolk(k + a)dp, = ip(P + Q)dy ] /0p, (2.76)

(63]

NN 2t d s Py AP OAT AT LT AL AN L RN RN R R - v A W 7. YRR N
AL IR o T O e N L o T T Y T Ve



leading to the result

H ={§ w s's - g"2[k(k + q)d__ - ip(p + Q)J ]
S {Qqq q bq *q

*
{kik + Q)qu - ip(p + Q)JN]/QCQ} . (2.77)

3. COLLECTIVE EXCITATIONS

The form of the Hamiltonians ”p' Hr' and Hs is very similar to that of
electron-phonon couph’r\g.3-g This suggests that canonical transformations can
be made to new Hamiltonians HB, H;, and H;, which contain terms that are ;n1y
_quadratic and fourth ordeé in the fields, with no terms containing both vector
and scalar fields, and that the new Hamiltonians can be analyzed along the lines
of the BCS theory for superconduct*ivi1:y.8-18 We now pursue each of»the desired

transformations in turn. is given by Equation (2.49):

Hg

Hg = E (o, a8, - iv f (e - .;)ogq(uwc;+kcq - Wondhedg) /9] - (1)

where

fo= /200, . (3.2)
Equation (3.1) may be written as

HB = HBO + Hm . (3.3)

The transformed Hamiltonian, H;, may be written as

HB = Hﬂ; M51 ' (3.4)

with

*
H 8o Euakakak (3.5)
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and, (see Appendix F) again recalling that 1: = -1,

. _ 2.2
Hm = Ewakk fk

+ + u +
Woek Pqr -k !c Ca'-k%q’ . Vaek Ya'-k9a+k%qda’ -k9q’ (3.6)
qq' [(w . ~-w )2 + k‘]u2 [(w, - @ )2 * vzk‘]u2 ' |
req cg-k q dq dgq-k q
The meaning of the frequencies ”cq’ “cq—k" ”dq' and “dq-k' is discussed in
Appendix F, as are the frequencies “bq' ”bq-k" udq' and u¢q_k,,to be found

below.

Hr is given by Equations (2.50) and (2.51):

t +
H. E {unq"q"q + vogq(nq na)

t i + |
[E k(k + Q)bk+qbk/uak PP+ q’¢p+q¢p/v"p°p+q ]‘ . (3.7)

with

gq = CﬂanBprq . (3.8)

We write Equation (3.7) as
H =H _+H . V (3.9)

r ro ri

and obtain a transformed Hamiltonian H; given by (see Appendix F)
(] ]
"r = Hro + M'_1 ' (3.10)
where

f
H . = .
r0 E Wnaq"q (3.11)




- Lot

and ;
H' = "
1 2 "(a! + + + - 2 _ 2 o

2 qZ ngq{ g.p(p IR DA XA SV {CRES NN el LTI 4

: b

_ ' + + _ 2 2 4,2 \

Zu{' k(k + q)k' (k' + Ay, BB 1Byt / Ll Op-g) * unq]uak}. (3.12) i

We have used a - sign before the second term in Equation (3.12) and in front of dz K
.

within that term as a reminder that the frequencies Yok and wbk-q are purely -
imaginary. : . : N
]

The expressions for H, and H are similar to those for H_ and H!: )

t + y

H =H +H =))u ¢¢ + -< ~

s s0 s1 E{ {9 qgq- Yogq.({q i) <

t i + .

[)é k(k + Q)b BL/w, - 2P(p + q)¢p,q¢p/¢_wpup+q)]} , (3.13) g

~ 3

o

where 3
6
x .

gq cw(q/BVan- ; (3.14) N

>

He = Hgg + HI, , (3.15) .,
where ' 3
M, =Y ¢t ; 3.16 N

20 " § %a‘a‘a (3.18) :

.

i
-_

"
]
Y\
by
:.
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and : i

1
' 1 %2 I
H!, = - 29w »
, s1 2%q 2 q &
(p + ' 2 .
{g‘p P+ Q' (p' +ae oeq¥otnr-q® pr [0 = 0gp_a) ]wpwp,q 7

R 2. 2.2 ) <

+ Ekz k(k + g)k' (k' + q)bk+q k k' -q k'[(ubk "’bk-q) + “cq]uak} + (3.17) :
]
We now make the definitions: "
' 2 k(k + q)bgﬂ:k _

B%q ® 29q¥% )3 TR , : (3.18) N

K Uugy = Gy )" + @ o X

~q ng’ ak N

N

) )
o 1 %2 kik + a)bf, b :
459 " 29 % E 2, 2.2 (3.19) 1

[y = Gpq)” + Wpqlug, ;::

2,2 “ark cgf+kcg k"

By ™ Toak fi L 2 24,2 (3.20) l

9 [logq = wpq ) + vk lug :
r

‘h

i 2.2 Vask Ihaicd ¥

A, = Jw_ k°f° ¥ 9k 9tk g ' (3.21) Y

dk = 2'ak 'k 3 [ v, )2 + vActy? .
dq dg-k q 1
42 p(p + q)e! o 3

b4q ® 295% ¥ ” 2—9-—9—9r , (3.22) 3

W, - - .

P H%p = “4p-q’ cq]“’p"’pm '
N

.
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and
o P(P + Q)o o y
2w lg®%, ¥ _P+ap : (3.23) N
¢q° 2°q q p (0w, - w )2 -l Jo w M)
% “dp-q €a" P p+q ;

We now interchange the primed and unprimed variables in the double summations of h

Equations (3.6), (3.12), and (3.17), sum over the primed yariables, and use the

definitions (3.18) to (3.23) to write -
H= Ha + HX R (3.24) i

.-’

(f

where- .
¥ + L - s

H = - )b b 'V e A R . 3.25 1
a E [uak.k.k E k-q k(Abq Abq) } ( ) ()

’
and A
- t + t - + :
Hx E;[uhqnqnq + U{q(q(q + E [uq-kcq-kchck ivq-kzgq-kqudk] ‘ iJ

Tot o (A A" ) (3.26) 3

- [ ] + " . . ‘.‘

P P-4 P ¢q %q ; -:

Y

o

Equations (3.25) and (3.26) are now used to find the normal modes of the

coupled system, given the averages assumed by the definitions (3.18) to (3.23).

‘-. R ’>‘ {. ," .« e

To simplify the problem, some sort of approximation is needed. Let us choose to
replace the inner summations in Equations (3.25) and (3.26) with typical values,

which we will designate with capital letters. For example, we let

y-p .

P iy
Then new canonical transformations can be made to obtain the dominant modes of o
the system. We first note from the definitions (3.18) to (3.23) that the o

various As have resonant denominators at small wavenumbers, so their main
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contribution should occur at long wavelengths. Let us begin with Ha'
transformations

B+k ] bk + bk-Q

and
« " %% " P-q
the average value of the second term in Ha may be expressed as

(Bhq * 8pq )(B1B, - BI,B )

In the Timit as Q -~ 0 and the As remain finite, we find

o = [oucnln - 285, + 85008 - shaf - )]

With the
(3.27)

(3.28)

(3.29)

Again using a standard procedurea, Ha is diagonalized with the transformations

- ytat
ak = uk.k vial ’ (3.30)
K Kk
+ taf -
ak = uk.k v_a_ R (3.31)
k k
where
ud - v .
K
and
uk' Vk -1 . (3.32)
The eigenfrequency for the diagonalized Hamiltonian, Gk’ is given by
uhk = uok + 01k . (3.33)
where
2 2 2
Yok T Yak * i - (3.34)
(69]
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and .

= ] (1] .
m1k 2(Abo + o) . ‘ (3.35)
§
W,k how is complex and is no longer a simple quadratic in k. o
“
The expression for the scalar Hamiltonian is considerably more complicated )
\ .
| than for the vector Hamiltonian. Consequently, it is helpful to make a number of R}
“
simplifications. First we interchange the p and q indices in the last term in N
Hx. ‘We then make the following . .roximations:
e let p,k ~ 0. _ 3
e let = ] A ’ ::
&8 & ;
e Keep on]y terms w1th the same value of q in the last (9) term.
e Drop qu compared to cq for small q. A
>
We then make the definitions .
&
B, = Lim(al + a3 ) . (3.36) y
i
- Vim 2q(w,, + 9) ) %
[~ 2 ] ] A ’ . (3'37 :
I .
qq "
- N
01q = 2(0q - A¢) ' (3.38) ;
o
and ~
w = + 20 + 2A ; .39 et
og " Y9 " gt e (3.39) R
. -
and find :
H th o+ ¢t tet . ) y
x = Llogqning + ¢heo) + 0 (et + noc o)) (3.40) s
q 4
Proceeding as for Wy, we find the eigenfreguencies of Hx to be given by -
’\
*--
2 2 2 -
ux Wy - Wy . (3.41)
~
o
{10} N
@)
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The development given above has strong parallels with the Bogoliubov theory

of superf1uidity8'9'15'19

and the scs theory of superconductivity. However,

the similarity in form of Equations (3.6), (3.12), (3.17), (3.25), and (3.26)

to the Hamiltonians found in those theories is not sufficient to indicate
similar critical behavior. 1In the BCS theory, the Poisson brackets are replaced

with (Fermion) anticommutators, leading to a dispersion relation of the form

uza wg + W (3.42)

where w, is a constant. This produces a gap in the dispersion relation at low
wavevectors. In the Bogoliubov theory, w0, scales as k2, with @, again a
constant. This leads to a different k depéndence for the eigenfrequency as k
increases. A dip in the dispersioﬁ curve can result for appropriate interaction
potentials, creating an equivalent gap in the dispersion curve.

In the treatment given above, we have no gap or dip in the dispersion curve-
and hence no similar critical behavior. A gap will occur at small k or q if
the system is bounded, but this boundary condition effect is different from an
intrinsic bulk effect due to many-body interactions. Consequently, no clear
conclusion can be reached regarding critical behavior, as the inclusion of higher
order terms or an examination of the various As may yet indicate non-monotonic

dispersion curves.
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1. RULES FOR DIAGRAMS

Rules for drawing diagrams, summing them, and calculating the quantities
they represent can be derived by examining the form of the Green's function
given in Section 5 of Part I and following the diagram procedures used in
quantum fi;ld 1:heory.1°B The vector fields 6bey a diffusion equation, which is
very similar in form to the Shroedinger equation for a nonrelativistic electron.
One problem that arises is that the isolated disturbances of the solenoidal
fields do not propagate, but simply diffuse. The Green's functions for the
scalar fields are of the same form as those_ for phonons, which is not’
surprising, since the scalar oscillations are es;entia11y sound waves.
Therefore, the diagrams for the scalar fields should obey rules similar to those

for phonon diagrams.

The following rules are very close to those given by Shultz:1

(1) Draw all connected, topologically nonequivalent diagrams with 2n
vertices and two external points, where three lines meet at each
vertex. At least one and as many as three of these lines may be dotted
Tines with the remainder (zero to two) drawn as solid lines.

(2) Write down the contribution from each diagram.

(3) Sum these contributions.

The contributions to a calculated gquantity corresponding to various diagrams
are as follows:
(1) - For the contributions to the numerator of the two-particle Green
function draw two points labelling them ri and ré (at which lines will

start) and two points labelling them " and r, (at which lines will end
anywhere on the paper. Every diagram will ultimately have a line with

an arrow on it leaving each point labelled with an r' and a line

(74]
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line arriving at each point labelled with an r. For the vacuum

diagrams, there are no points labelled with r's or r'"s.

(2) To get a contribution in which interaction occur nz times, draw n2

points labelling them Yyr Ypreoeo¥y
2

(3) Add directed solid lines and dotted lines between points so that each
"internal point” (i.e., ay or y') has three lines eithe} going into
or out of it, and each "external point"” (i.e., an r or r') has one line
out of it (if it is an r') or into it (if it is an r).

P —
(4) For every element vy. y., write G6_(v.ly.).
. 1 J o 7i'7j

(5) For every element Y; yj, write S(yilyj). Dashed (phonon)
Tines need not be directed, because (S) = S(~k). It is usually
convenient to direct phonon lines just to keep everything consistent in
a diagram.

(6) For every element¢g , Write po(yi) = 1im G(r1 - rz, - T).

Y, t-++0

(7) Integrate over all values from -o» to » of the time and three spatial

coordinates of every internal point.

In practical flow fields, it will be necessary to operate in coordinate
space. However, since it is usually much easier to perform calculations in

momentum space, the rules for summing diagrams in momentum space are also given:

(1) Draw all distinct structure, as in r-space. All vortex lines must be

directed. Direct phonon lines for convenience.

14 .l ‘(_ "

e

. v
Y ae

A T, T, T

24 4 5 0 0 R

v g va

R N XA

AN W I

Y

AR



(2) Assign p's and q's to all lines so that the sum of the energy and
momenta entering a vertex equals the sum of the energy and momenta

leaving a vertex.

(3) For every elenent.___<fl_.inc1ude a factor Go(p).

(4) For every element Y- include a factor S(q).

An inspection of the nonlinear terms in the Hamiltonian, discussed in Part
11,. shows that there will be three types of vertices, depending on whether the
number of solid lines is 0, 1, or 2 as shown in Figure 2. If there are two

solid lines (Figure 2a), then a vertex factor of

v.c w '
u=w° / 4 k(k + q) (1.1)
ak P

should be inciuded. If there is one solid line (Figure 2b), the vertex factor

is

Va—2— K9 0 (1.2)

If there are only dotted lines (Figure 2c), the vertex factor is

iy ¢
0

16V
Pp+q

W= p(p +4q) . (1.3)

Since the vertices each correspond to an odd number of fields, diagrams will

contain an even number of vertices, Assume that the Linked Cluster Theorem holds
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Figure 2. Basic Diagram Building Blocks.
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and consider only linked graphs. The simplest two-vertex graphs are shown in :
Figures 3 and 4. Apparently, the "bubble graphs" shown in Figure 3 are not ' ﬂ
allowed except when the line joining the bubble to the rest of the diagram 7
carries zero momentum. Some 4-vertex diagrams are shown in Figures 5 and 6. $
Obviously, the diagrams rapidly become complicated as the number of vertices

increases.

Propagators are repreéented by uninterrupted lines; those without

interactions are given by single lines, while those with interactions are given
i Iy
by double lines. Thus G is given by l, G by Il, S byy , and S by |
: I il

o LA A

2. SAMPLE DIAGRAM CALCULATIONS
3,9,10

Standard results can be borrowed from the literature on diagram calculations

——y

in quantum many-body theory, albeit some of the diagrams for the Navier-Stokes

problem will have a slightly different form than the corresponding condensed 3

matter diagrams. First, some definition53 may be adopted without alteration.
A self-energy part is defined as any diagram without external legs that can be
inserted into a given line. A self-energy part which cannot be broken into two
unconnected self-energy parts by removing one line is defined as an
"irreducible” or "proper” self-energy part. Let us begin with Dyson's equation, !
taking the vortex propagator as an example. The procedure is to show that the

sum of all proper diagrams can be arranged in a geometric series:
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Substituting Equation (5.7) of Part I into-Equation (2.1) yields

6= (w-u, + 0o, (2.2) .

A similar equation will hold for S. In practice only a few dominant irreducible
diagrams are summed to obtain L. Fortunately, a good estimate for G can be
obtained usin§ Equation (2.2) with only a moderately accurate expression for L.
Effective interactions due to sums over large numbers of diagrams can be
expressed in terms of new types of diagrams. Define any diagram without
external legs which may be appended to a vertex as a susceptance part, and any
susceptance part which cannot be reduced to two simpler disconnected susceptance
parts by breaking a single lin; as a prbper or irreducible susceptance part.
Examples are given in Figure 7. Let the sum over all proper parts be denoted by
X = . ' ' (2.3)

Then in a manner similar to that used to obtain Equation (2.1) we find, if

bubble graphs can be ignored,
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3. HEAT EQUATION

We describe heat transport by the etauat:-ion”-16
} . 7+ ve¥7 + O V27 = 8'7 (P + veWP) + pe (3.1) {
where
B' = B/pcy (3.2)

B is the coefficient of thermal expansion: ,

- - 1 (32
8 Py (aT)P (3.3)
cp-is the specific heat at constant pressure, and DT, the coefficient of thermal &
diffusivity, is given by -
D, = k/pCp . (3.4)
For gases 8 - 1/, while for liquids 8 becomes very small. DT is usually
described by the symbol x, which we are reserving for other purposes. '
The symbol
2 "
av v '
ey Mot (3.5) :
a,B8\ B a :

where e describes the generation of heat due to friction. It is small, and we .

usually ignore it,
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3.1 Thermal Lagrangian
A Lagrangian density which describes Equation (3.1), 2 T is given by

£y = %(770* - %101‘) + %m - W)+ (TVT - TVT) + %(f - 1) (v - v39)

- 0,9TVT - B FTIH + ¥ + (W - W)e (v, W + Wov,)]

2 2- \2
1 = 3y 3y
-wp(T+T) ) -
2 . a,ﬂ( axaaxp axaaxp
salrt-Tr) -t -Ty)ews® . (3.6)
with
TaT+T . (3.7

The third term in Equation (3.6) has been inserted to avoid adding an extra
term to the Navier-Stokes equation. The ' term in Equation (3.6) will add a
term to the Navier-Stokes equation of order p'DTVZ7'. We will assume that this
can be dropped. The last term will not contribute to Equation (3.1), but will

add a term of the forn16

a7 - )0 (3.8)

to the Navier-Stokes equation. As in the case of the velocity potential, the
simultaneous occurrence in the eguation of motion of terms that are of both even
and odd order in the time and spatial derivatives requires the use of complex
fieids in the Langrangian. We will again have relations for odd derivatives

that will require hypercompliex fieids coefficients to satisfy:

Gayt-ty (3.9)
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and

‘ V7 = 7T - Ty, - (3.10)
If we write
v-vkw-mk (3.11)
and
P = ply g + ¥r,) (3.12)

and disragard terms that cancel upon variation of ¥ and ¢ or are included with

the velocity equations, then the Lagrangian LT leads to the equations of motion

S . 2 - T . S - l
7°T + VeVUT + DTV T-8 T(yoP + veVP) + z?e =0 (3.13)
and
-707 - VeVT ¢ oTvzi - 5'?(105 + VeWP) + %pe =0 . (3.14)

Using Equations (3.9) through (3.12), the addition of Equations (3.13) and (3.14)

leads to Equation (3.1), as desired.

The momenta conjugate to T and T are given respectively by

1= X
"T = 2'l' (3.15)
and f
- 1. i
”T 2 - 21 . (3‘16) )
d
.
w
-
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The "Hamiltonian” density J4 corresponding to L. is given by

1eE - mete (T - 19T - 17 - 12092 - 23 =
A = (W - W) (TVT - TVT) - 5(T - T)"(V7¢ -~ V7)) + DVTVT

¢ BTTIH + ¥ + (W - W) (v W + Wy )] + v (T + Tle . (3.17)
The Poisson bracket relations are similar to those for the A fields:
(Ti(r), T5(r)] = (To(r), T;(r')1 =0 (3.18)

and

T 1 = 1 - '
[Ti(r), Tj(r )] Eo(r r'). (3.19)

We may expand the fields T and T in a familiar way:

-3 t
T=YT, e T 4 (F) (3.20)
k

and

- A

Ts= E Tee wlr) (3.21)
where we again take

iker an
uk(r) = @ . % B

From Equations (3.15) and (3.16) we also have

| t-iker
Z Tke uTk
Kk

-t
(Y

and

'-“‘Tkt”.'r
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The dispersion relation obtained from Equations (3.13), (3.14), (3.20) and

(3.21) is

-i“Wk + ivek - DTkz = p'(7°5 + VeUP) + pe/T .

(3.25)

1f we drop the term on the right side of Equation (3.25), we obtain simply

. 2
_QTk = yek + 1DTk .

(3.26)

We see that temperature disturbances are damped by diffusion processes and are

carried by the mean flow; they do not actually propagate, as pressure pertur-

bations do.

The relations
Te(r W

and
2 =
T= ([T, H ,
together with Equations (3.17), (3.18), and (3.19) yield

7°i+v-vr+nv2

[ 1 -
VT = B'T(Y P + veWP) = cvpe + (T - T)WV

and

Tyg + vevT - DTVZT' + p'?(yoé + VeVP) = %vpc + (T -T)wv

(3.27)

(3.28).

(3.29)

(3.30)

Subtracting Equation (3.30) from Equation (3.29), we again obtain Equation (3.1),

as we should.

3.2 General Treatment of Passive Scalars

In multicomponent fluids, we encounter equations of the form

g+ veviy oYVZ, = f(y).

(91]
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Equations of this type may be treated by Lagrangian densities of the form

28\, = Yy ¥ - Yo ¥ + (W - W)e(TOY - v9T) ¢+ (7 - V)PP - W)

- zovvw‘rw - n’rfo(v) - vfo(v‘r)] , (3.32)
where
g Y+ Y , (3.33)
PRRALE N (3.34)
Vg = 7Y - W‘yk , _ (3.35)

1 and f, is the linearized part of f. The conjugate momenta corresponding to Y

and.Y. are respectively

RY = EY (3.36)

and i
- . l -
RY 2 - 2Y . . (3.37)

The Hamiltonian density corresponding to Equations (3.31) and (3.32) is
240, = (W = W)= (YWY - Y¥¥) + (¥ - V)2(v%§ - vPy) + a0, Wiwv
+ on(Y) + on(Y) . (3.38)

The Poisson bracket relations for the system are of the form given in Equations
(3.18) and (3.19), with T replaced by Y. We may transform Y and Y using the

relations

-1 t+iker
Yequ

Y=Y (3.39)
K
i t-iker
Yab \'rke “r . (3.40)
k
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with

Wy = VoK + iDYkz | . (3.41)

The description of the total density p is somewhat different than that for
the species qgnsities ¥ since there is no diffusion term. - Nevertheless, we
will still need to construct a Lagrangian density in terms of adjoint fields.
First we show the results of an attempt to formulate a description in terms of a

single field. The continuity equation

p+Ve(pv) = 0 . (3.42)

may be written as

L] - 2 2-

P+ Voo (W -~ W) + p(Vip + Vy) . (3.43)
Equation (3.43) can be obtained from the Lagrangian density .Bp. given by

cav -
.E,, = Sxlpe + oV (W - w1 . (3.44)
We see that for a change the density field is purely real. Lp makes no net
contribution to the velocity equations and the equation of motion resulting from
it is unaffected by a variation of the velocity fields. Unfortunately, however,

the momentum conjugate to p, np, is given by

" =7—p ! ' . (3.45)

Since we cannot formulate Poisson bracket relations with field variables that
are self conjugate, we must invoke adjoint fields, even though there are no
second-order derivative terms in Equation (3.42). We see then that Equation

(3.42) is a special case of Equation (3.31) with Dp = 0.

(93]
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4. APPLICATION OF THE RENORMALIZATION GROUP

by John Erdei

In this section we will present initial results on the appIicability of the
renormalization group to our model. We note that both the static and dynamic
forms of RGT are of interest. The dynamic versioh can be applied directly to
the results of Appendix E, while the use of the static renormalization group
requires the recasting of the model in a form similar to that of Landau-Ginzburg
Theory. Such a technique would be used to study the steady-state features of a
given flow configuration. Keeping in line with.the thrust of the previous'work,
we will use the equations of motion from Appendix E to implement the dynamic

renormalization group procedure.’

Our intention is to introduce a perturbative expansion for the equations of
motion given in Appendix E. The goal is to categorize the fluctuation
integrals which contribute to the renormalization of the viscosity. Once the
form of the fluctuation integral is identified, we can examine the applicability
of the renormalization group procedufe and determine a direction for future
work. Due to the complexity of the model and the number of integrals contri-
buting to the renormalization of the viscosity, in this report we will display
the derivation of one of the contributing fluctuation integrals. Two possible
expositions of the renormalization group can be considered; one involves the

averaging of fluctuations over all wavelengths. The static form of this proce-

7 8

dure is described in An-it.1 while the dynamic version can be found in Lovesey.1
The second allows for the averaging of fluctuation over some defined length
scales. This system is in line with the iterative form of RGT developed by

Hilson,19 and applied to the Navier-Stokes equation by a variety of aui:hors.m-22

[94]
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4.1 Equations of Motion ;
We will use the equations of motion (E.20) to (E.25) to generate a correc- &
;
tion to the physical parameters in the systems, and then examine the results for ﬂ
]
the application of the renormalization group. The complexity of these equations :\
W,
of motion is indeed great, and for this report we will display a portion of the ?9
results of a perturbative approach to fluctuations. As a system uﬁdergoes some X
)
transition to turbulence, it becomes dominated by the formation of vortices. f:
The vortices are associated with the local rotation of the fluid. As such, we 5
will take the interesting fields to be the set a in the following exposition. ;:
. 2
Recall that these fields are related to the solenoidal part of the velocity )
, o
field A. We begin with the set of Equations (E.20) to (E.25). We will intro- d
duce the notation that any wave vector is now placed as an argument for each ;
. N

field, leaving subscripts to denote Cartesian components. With this notation, E
o

we have: -
. =
8,(k) = -uga, (k) + (k) T ey k(A (a.knT (avkin(a) + By(a.k)n(ask)¢T(q) »
3

+ C (a,kIn(a)<(ask) + O (a,kiCt(q)C(ask)] (4.1) _
e
al(k) = iw al(k) + f(k) Z €:1aq [Aq(a- kIt (gsk)n(a) + B (a,k)n(a+k)¢T(q) =
o)

+ C (a,k)n(a)¢(aek) + O (q.k)¢T(q)C(ak)] (4.2) R
=)

S

n . - s ' - at Yy [] <l ? R

n(q) = iwnqn(q) + E.f(k )enmkp(aq(k ) aq(k NA,(a .k In(q-k") =
+ 8 (q.k')CTa)] (4.3) ]

N

3
rd

N

[95]
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iw_nt(q) - I f(k')e_ k' [a (k') - a*(k')][A (g,k')nt(qek*)

nt(q)

nq K npq p
+ C (a.k')C(aek")] (4.4)
? = - ] ] » ] - f ] ] 1' ] -
€(a) = -iw  C(q) + E-f(k e gekg[ag 1K) = (k! )18 (a,k*In"(qek’)
+ 0 _(a,k')<(Q)] (4.5)
and
T = fo ctia) ¢ E'f(k')e,.,t la (k') - al(k')ILC (a.k' It (aek’)

+

O.(a,k")CT(k'-q)] . (4.6)

We will remove the time derivatives in these squations by introducing an
appropriate frequency, so that, for example, we can set 8= -iva. As a
technical convenience, we also introduce a random forcing term into each

equation. Using these steps, we write

a (k) = 63 (K)FJ(K) + 63 (K)F(K) E € 1a%1[Aq (9. K)N' (a#kIn(a)

+

B, (a,k)n(a+k)¢t(q) + C (a,KIn(q)¢(a+k)

+

0 (a.k)¢T(a)Clark)] (4.7)

ajk) = afjFT k) + j(k)f(k) Le 1a%1 (A (@ kInt (a+k)n(a)

+

B, (a,k)n(a+k)<T(q) + C_(a.k)n(q)C(a+k)

+

o, (a. k)¢ (a)c(ask)] (4.8)

IRy

w



= 6"(q)F" " £ (k" k'[a (k') - a (k')1[A (q.K')n(q-k'
n(q) (Q)F'(q) + G'(q) E- (‘ e oakala (k') - a (K')I[A (q.k'In(a-k")
| + 8 (a.k')cHak" )], | (4.9)
nt(q) = 6" (@)F" (q) + eﬁ’(q) T f(k')e_ k'[a (k') - a'(k')]
k' npPqgp q q
+ (A (k' In*(aek') + C (q,k")Cak" )], (4.10)
¢(@ = 65(@)Ffa) + a¥(a) T fk e _kifa (k') - at(k')]
) k' rst st Tt
+ (B (a.k Int(a+k’) + D (k' )K(Q)] : (4.11)
and
oy o altiarest ¢t : : 0 - at ik
(@) = 8> (Q)F"T(q) + @ (a) ] Flk')e K (a (k') - a (k')
+ [C.(a.k')n(q+k’) + D (a.k")KP(k'-q)] (4.12)
where
- JO
a - 1]
80 = Ta v ry) (4.13)
at %
65 = o T ey (4.14)
ak
n 1
A S (4.18)
t 1
a" (q) = T . (4.16)
(iw mnq)
< 1
6*(a) = oy o) (4.17)
[97)
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(4

1 .
— 1 (4.18)
(iw 'lﬂcq) : ) ;

ta) =

are the bare Green's functions for the system. We will be interested in working )
u%th Equation (4.1). Here

W, = ivk® . (4.19)

ak

4.2 Fluctuation Integrals

We will inpdse the condition

<Fi(k)F3(k')> = d{jQ(k)J(k-k') . . (4.20) 3

where < > denotes an average, and, if desired, some functién of k can be defined
through Q(k).21 We will simply take Q(k}) to be a constant. We will introduce an
iterative perturbation solution to Equation (4.7) by averaging over the

variables n and {. To do so, we introduce Equations (4.8) to (4.12) into Q

Equation (4.1). )

It is clear that even with the simplification of only treating the equations )
for the variables a, the complexity of the iteration is formidable. For the
purposes of this report, we will examine one specific term in the series, and
show its relationship to the formal renormalization of v. Under the described s
iteration procedure, one can show (See Appendix G) that Equation (4.7) can be

recast into the form N

<a k)> = <G:j(k)F:(k)>

. e
L

s 0 e
s s Az

n nt,_..n

+ <G (k)e G (q+k)G" (q)G'(q+k) .

uln 1 rst s[I -
[f(k)Am(a.k)][f(k)Ar(q,k)]G:t(k)]F:(k)> o (4.21) -

v
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or

a a
'j(k) = (Gij(k) + Git(k)ewlnk1erstks

)1 e"(q+k)e"*(q)c"(q+k)f(k)A'(q.k)f(k)Ar(q.k)
q
a 8 .
Git(k))Fi(k) * e e e e s (4.22)

We can therefore define a (partially) renormalized Green's function in the form

k f(k)ait(k)

~8 a a .
Gij(k) = Gij(k) MILFLY LIRS LR

ZA_(q.k)Ar(q.k)e"(q+k)e"*(q)GV(q+k). (4.23)
q

One of the effects of the non-1inoar-qoupling between fields is to alter the
matrix structure of the bare Green's function, so that it becomes non-diagonal.
The off-diagonal elements indicate that the viscosity matrix, which was
originally diagonal in the linear theory, becomes a non-diagonal viscosity
matrix. This can be seen since one can invert Equation (4.23) and identify the

viscosity matrix. In the Tlinear theory,

[e:j(k)]“ =8, (i + iay) (4.28)

- -iwd, . - [vaij]k2 (4.25)

ij

which defines the viscosity matrix vaij. When the (partially) renormalized
Green's function given in Equation (4.23) is inverted and the renormalized

viscosity identified, the viscosity matrix will no longer be diagonal, i.e.,

(6. (k)] = -iws.. - v, kS (4.26)
ij ij ij * °

One might associate the appearance of off-diagonal elements in the renormalized
viscosity with the generation of a turbulent eddy viscosity matrix. The exact

nature of these off-diagonal elements requires further study.

(99]

W) "-F\'-F,C.f Lt Gl S e o S,

e S S e T e n s . e g
g T TR e A 2]

g
- S

EX

2AFA

-

Ty S
o "'. RS

e

Yy ey

«

ey

,. .,
Tl

-

~
B

[

L
R

AT TeTe T
Yvees

¥
~

7
"-

‘d‘

~)



Logh 8t 020 .6 0.0 8 4 8 00 1t h it 4% e d e dt hie M dle b ettty Agtal bay ¥

We see from Equation (4.23) that a complete description of the viscosity

matrix requires the evaluation of the sum
1K) = JA (a.K)A (a,k)G"(a+k)G™" (q)6" (qk). (a.27)
q

This sum typifies one of the contributions of the n and { fields to the study of
the properties of the a fields. It would be convenient for future evaluations to

replace this sum with an integral,
Y- I da’kg(K), (4.28)
k

where g(k) is an appropriately defined density of states. Then the sum given by

Equation (4.27) can be written in the form
1 (q) = [ a>qg(q)
wr

[(2q, + kyJuy(k) + (q, + k )& (a+k) + qu (a)]
[w-%m«nz

((2q, + kr)ggfk) *(a, + ko (a+k) + 9w (q)]

[ - o (a)] (4.29)
or,
1 3
Toe(@) = 2f ax [ dag(@l(za,e ko () + (q ¢ K Ju (@kieqe (@)
[(2q, + k,.)&(k) + (q. + k,.)wn(q+k) + q,.wn(q)] : (4.30)
3
w- (1 x)wn(q) - an(q'fk)]
{100]
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where we have used the Feynman method of folding denom‘nators1

r(a1-+ a, + ... an)

1 22
e, &, a, = r(¢1) r(az) .o r(an) I dx1dx2...dxn_1
a1 az LI ) an
a.-1 a,-1 a -1 a -1
1 2 n-1 n
X, Xo ' ees X0 (1 - x-x-~.. Xnoq)
(4.31)
A, *. ..t
[x,a;, + x,a, + + X .2 + (1 - x, - X, = . =X )a_] 1 n
11 22 tee n-1 n-1 1 2 vt n-1""n
and
0x <1 ; X +X + ... +X €1, ) (4.32)

i 1 2 ' n-1
At this.point, the requirement of a renormalization group calculation can be
based on two points. If the integral I.r(q) suffers from infrared (q - 0)
divergences, then the renormalization group method can be used to discuss the
removal of divergences. One may also incorporate a procedure which allows for
the treatment of the fluctuations in the n and { fields only over a prescribed

set of length scales. Assuming a constant density of wavevectors, the integral

Imr(q) indicates a q-dependence of the form

g (4.33)
which suggests that the integrals will suffer a power-law divergence for spatial
dimensions below six. A renormalization group treatment which employs an
c-expansion technique would be valid only around six dimensions, and would not
be reljable for a three-dimensional system. Similarly, one would have to

determine if the iteration is defined such that higher-order-fluctuation

integrals do not introduce higher-order divergences. If so, the renormalization

group procedure will fail.
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The procedure may be used, however, if one assumes an upper and lower

cut-off in wave vector. For example, shell integratiohs may be used to integrate

;
over length scales from a long wavelength on the order of the size of the 2,
.
appropriate region, down to the Kolomogorov scale. We could then carry out :f
o
integrals of the type -
A
3 i+1 3 5
I dq ~ lA. dq , } (4.34) "'
1 Y
where the A's define the wave-vector shell. The shell integration could then be N
: -
iterated over the shells (i.e., over values of i) until the entire wave-vector ‘i
. -
region is covered, or the effects of fluctuations on a specific scale can be s
treated by examining only one of the shell integrations. This method would not |;
result in divergent integrals due to wave-vector dependences. Since the i
interactions between the a fields and fluctuations of specific lengths are of ph
. e
interest, this is the technique we would pursue. R
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SUMMARY AND SUGGESTIONS FOR FUTURE WORK

We now review the development of the work described in Parts I through III

and explore the implications for further study.

Sumsmary

The Lagrangian for corresponding to the Navier-Stokes equation.was presented
in Part I, Section 2, and the basis for deriving it is given in Appéndix‘A.
Equations of motion for the linearized system were derived using Euler-Lagrange
relations. The Hamiltonian and Poisson bracket relations were derived from the
Lagrangian, and equations of motion were again obtained. The equations of
motion obtained fro-'the Hamiltonian and the Poisson bracket relations were
identical to those obfainod from the Lagrangiaﬁ, showing consistency in the
theory. The relationship between the above equations and the Navier-Stokes

- equation was also demonstrated. The entire development given in Section 2 of

Part I depends upon the assumption that the velocity potentials may be expressed
in terms of the sums of hypercomplex fields and their adjoint fields. The
justification for this assumption is discussed in Appendix C. It is not clear
whether the postulates given in Equations (2.5) and (2.6) of Part I contain a
physical basis or are meraly a mathematical device. However, without these
postulates, the entire theory falls through. In Section 3 of Part I the
symmetries of the Lagrangian were examined to derive conservation laws and to
determine those variables which are conserved with respect to the basis
Hamiltonian, "o‘ The derivation of the important stress-energy tensor is given
in Appendix D. The form given in Appendix D pertains only to the scalar fields.
A four-vector formalism was derived to include the solenoidal fields in the

September 1985 monthly report, but was not included in this report as it was
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judged to be unwieldy. The symmetry properties of the Lagrangian and conserved

variables can be used to analyze the transition from laminar to turbulent flow.

The Hamiltonian was diagonalized in Section 4 of Part I. It was found that
two different fields are required to diagonalize the scalar fields. This
suggests an analog with the description of a charged meson in quantum field
theory or perhaps the electron-hole description of a metal. However, the
physical significance, if any, behind the need for two different diagonalized
fields remains elusive. One possibility is that the fields describe sound waves

in which local éonpressions are in phase with the maxima in the local velocity,

and that the { fields describe sound waves in which local condensations are out

of phase with the local velocity.

Green's functions were derived in Section 5§ of Part I. The form of the
propagators for the potential fields resemble phonon propagators, while the
propagator for the vortex fields resembles that of a nonrelativistic electron.
This suggests that there may be an analogy between fluid dynamics and the
electron-phonon problem. The development of Part I contains all the elements
needed for a field theory. Part I thus describes the core work of this report.

Its consequences were explored in Parts II and III.

Part II illustrated how the canonical transform procedure common to quantum
field theory can be used to investigate mode coupling and reveal analogies with
various critical systems which are relatively well understood. The discussion
of Part II suggests that the many-body formalism can be useful not only for
describing the interactions between distrubances in fluid, but can also be used
as the basis for other descriptions of turbulence, such as the "deterministic"

approaches currently in vogue.




Part II1 is essentially a preview of more advanced calculations which can be
based on the developments of Parts I and II. Rules for diagram calculations
were given in Section 1 of Part III, and simple illustrative calculations were
given in Section 2. The rules were made by analog with the rules for condensed-

matter theory, and may need to be modified following a thorough review,

Section 3 of Part II1 showed how the concepts of Part I may be applied to
describe additional phonemena, especially the behavior of passive scalars. The
heat-budget equatién was used as an example. This treatment shows that the
concepts used in this report cén.be applied to the solution of a wide range of
partial differential equations, including but not limited to other dissipative
motion. Section 4 gave an.example of a renormalization group calculation which
was done by John Erdei. Tﬁis extensive calculation illustrates how the

renormalization group can be used to include multiple scales in a calculation.

Conclusions and Suggested Research

The formalism developed in this report is internally consistent, and shows
strong parallels with field theories for other systems, as was intended. It |
appears to satisfy the objective of deriving a Hamiltonian for the Navier-Stokes
equation that can be used to carry out many-body calculations of turbulent
flows. This work indicates that all of the standard techniques of field theory,
including canonical tranformations to rediagonalize the field variables, the use
of propagators, and diagram calculations can be brought to bear on turbulent
systems using this or an allied formalism, notwithstanding that the development
is entirely classical, and includes dissipation. Indeed, the approach taken

here is applicable to a wide range of other partial differential equations.
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A number of loose ends remain in the presentation of the basic theory. In

particular, the Green's functions and rules for diagrams should be thoroughly
reviewed and derived on a rigorous basis. In addition, the symmetries of the
Lagrangian should be analyzed further, particularly in regard to local gauge

invariance.

To merit serious attention, any theory must give reasonably accurate
calculations of experimental results. Therefore, the present formalism should
be test;d as soon as possible before extensive work is based upon it. Since
almost all calculations will involve Green's functions, diagrams, or probability
density functions and partition functions, these quantities should be
rigorously derived and checked for internal consistency. The nonlinear
expansion terms in the pressure gradient'tera were not studied in terms of the
diagonalized field variables. The contribution of these terms to mode coupling

should be examined.

Once the foundations of the theory have been checked, calculations should be
made of those aspects of turbulence which are well understood. Tufbu]ence
spectra should be predicted, the propagation of sound through a turbulent fluid
should be analyzed, and expressions for the lower-order velocity moments should
be derived. Finally, attempts should be made to predict the transport of mass,

momentum, and heat for a turbulent fluid in a simple geometry.
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APPENDIX A :

EULER-LAGRANGE EQUATIONS FOR FIELDS >

- “f]
Consider the functional "'

-~ . [

.V

L -f& dtd’x 2, ' (A.1) K

where e 7
£=L (b ¥, W, Y, Yy, A, R W, Wd), (A.2) 5

then l.h
3l [é aLlw  3L3 , 3L aw , 3L v 3

e wdx SR a3 a%W aa " a¥y aa : (A-3) N

a o

. o

LA vy afak  afak, _af a(wxA) , __af a(vxh) ‘

2. aa A3 T3 sa’ (WA aa a(¥x;) da 2

vy A A 2

iR

Mow . ::-
- 'A [ 3 t :A’
4.3 LW 3 Maw|4 (4 3 . 3 ()3 :
/;.dtdx%aafdxa‘u:t d"dtat(a;)aa . (A.4) 3]

e @ -

:.

Similarly, E
v [.3, L 3V 3l aw|*% VAT ‘

f dtd’x 356 e -fdt 30y 30 -jt dtd”x aw:)aa , (A.5) &

a © @ b

@ S

and .\
4 2 s
f datd®x &L 2TY) L f g iz—— () 4 fdtdsx v(a_/.;_>a_§_:_¢_1 (A.8) 0
a .14 ") (V) A vy 2]
a * )
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4 3 2f_af \ w j' ¥\ » % (

= dtd™x Vv - Jdt V <

! (a(vzw)) % 3 v"”) 3a R
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7
)
p
o
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Also,

a a

. & )
4 . . .
[ gea’x —2L AN | [y 3L W -_/ 4 gea®x v-2£
(W) da 3(W) a3 (W) 3a

L4 (A.T)

ja 3 3 3L\ .3 3L | aw |4
=[ dtd x v( . ) -/3 xv( ) )
/ 3t \a(W) /3 ave) / aa |,

Using Equations (A.3) to (A.T), the condition
éL/6a = 0
leads to the equation

TR WY AR A R VRN A

a at ay W a(viy) at ow

Relations similar to (A.4) to (A.7) hold for the vector fields, A.

4 3_ af 3k 3g£aAt“ 3_al/3 \a3A
dtd"x = — = ] d'x =% — -[dtdx——.—
3A a3a A 3a at\ 3A Jaa

tﬂ-
and
4 4
/ dtd’x a(gfi) a(;:“ --/ dt 3(_3‘53)':3 -/dtdsx "‘a(sz)

e a

Continuing in a parallel manner to that used to derive Equation (A.

the condition (A.8) gives

3 _ 3 3L g 3L 3 o af

3A at (3A)

I(VxA) at 3I(MA)

(A.8)

(A.9)

For example,

(A.10)
3A
g - (A1)
6) to (A.9),
(A.12)
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APPENDIX 8

OPERATOR FORMALISM

As noted earlier, the solution to any partial differential equation (PDE) is

a f161d.B1 g add tnat it is a field under scalar addition and multiplication
over the domain of the independent variables of the PDE. In our case, this
donaip is {r,t}. In passing, we also note that the field variables for each PDE

B2

form an Abelian group under scalar addition"“ and that the Poisson bracket

relations for these fields and their conjugate fields define a Lie aIgebra.B3
Of more i-ediate-interest is the fact that any function of a field variable
defines a vector. In particular, the elements of the fields themselves comprise
a vector through the relation

f(¢) =9 , _ : (8.1)
where we now use the letters ¢, ¥, and x to denote general field variables.
Now for every vector field there exists a dual vector field. We may think of
vectors defined by Equation (B.1) as column vectors and the dual vectors as row

B2

vectors. Then the dual vectors are formed by taking the transpose of the

orginal vectors.

We may take the outer or tensor product of a vector and its dual vector to
form a tensor that can be represented by a matrix. Dirac invented a handy

notation to take advantage of the above properties of field variables B4

His
application was confined to the solution of the wave equation for the
probability amplitude in quantum mechanics, but we may use it quite generally.
We denote a column vector by the "ket" |¢>, and its dual row vector by the "bra"
<¢|. Then the tensor product of a column vector times a row vector is denoted

by |¢><¢|. Part of the utility of this matrix formalism is due to the

isomorphism that exists between the properties of linear operators operating on

[113]
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fields and the properties of matrix multiplication. This happy correspondence

is further strengthened by the fact that the isomorphism extends to the trans-
formation properties of these quantities. However, if the matrix formation is
to be truly useful, we must define an inner product, which we denote by <d|i>,
that has the following properties:82

to linearity

<«<cp + x> = c<d|x> + dpl> , (B.2)
skew-symmetry
ble* = w@le> - (8.3)
and positiveness
<¢|e>>0, reai, ¢to0 . (8.4)

In Equations (B.2) to (B.4) we have denoted complex scalars by the letters c and
d. If the fields ¢ and ¥ are real, then the skew-symmetry property collapses to
simple symmetry. The properties defined by Equations (B.2) and (B.3) give the

inner product the property of bilinearity.

If we can find an operation that meets the requirements of Equations (B.2)
to (B.4) we will have vector fields that form a unitary space,82 and will have a
complete formalism that can be used to calculate quantities of interest. Many
linear operations, such as conditional probability density functions, satisfy
Equations (B.2) and (B.4). However, it is more difficult to satisfy Equation

(B.3). The requirement of Equation (B.3) is met by the definition
<¢(a)|y(a)> = [da ¢*(a)p(a)f(a) , (B.5)

where a is the common domain of the fields ¢ and ¥ and f(a) is the steady-state
probability density function for the occurrence of given values of a. Equation

(B.5) defines a correlation function, which is a very useful quantity in
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probabilistic descriptions of many-body systems. The utility of the definition
(B.5) was first pointed out by Zwanzig 85812 4.4 MoriB13-B17 14 has led to the

development of projection operator and memory function calculations.818-820

Actually, the definition (B.5), aside from the weighting factor f(a) that
- takes account of the possibility expressing the fields ¢ and ¥ over an arbitrary
transformed domain for which all values a may not be equally probable, is the

same as a standard mathematical definition of the inner product.82

We see that we may construct a matrix formalism that is completely parallel
to the well known one of quantum mechanics. ''This formalism is quite general and
not at all peculiar to a quantum system. Indeed, almost all of the development
stemmed from the basic fact that th; solution to any PDE is a field. The only
aspect of our development that prese;ted any serious restriction was the skew- -

symmetry requirement for the inner product.

Since they are vectors, |¢> and <¢| satisfy the relations

6> + |4 = |w> + |o> (B.6)
| + @l = |+ <] (B.7)
[o> + (o> + [0) = (16> + l¥0) + [ (8.8)
w| + (| + <x|) = (<o + W)+ x| ., (8.9)
clie> + |¥>) = cle> + clv> , (B.10)
c(<o| + w|) = c<d| + caw| , (B.11)
and

1> = |o> , 1<d| = <o| . (8.12)

Furthermore, the dual of c|#> is c*<p|. wWe write this as
(cle)t = <o . (B.13)

P
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Let us denote the linear tensor operators |¢><¢|, |¥><¥|, and |x><x|

respectively by ¢, ¥, and x. Since the transformation properties of these

operators are isomorphic to those of matrices, we also have the relations

c(d’) = (cd)d ’ (B.14)
{(c + d)é = cé + dé ’ (B.15)
;(o +¥)2céd +c? ' (B.16)
*(Tx) = (9¥)x ' (B.17)
(® «+ ¥)x = &x + ¥Xx ' (B.18)
(Y + xi = ¢F + &x , {(8.19)
(cd)Y = c(9Y) , (B.20)
and
o(c?) = c(oY) . (B.21)

Furthermore, there will exist an identity operator, I, such that
10 = ¢ = 1 . (B8.22)
The combination of Equations (B.6) through (B.13) and (B.14) through (B.22)

84,821,822 114 operation of a bilinear

leads to the usual linear relationships.
operator on a vector will yield a new vector of the same type,

ole> = o, able = <«x| . (B.23)
This is often taken as the definition of a bilinear operator.B4,B21,822

We also have

> + [0) = olw> + o> (B.24)
(|l + <x|® = aple + <x|o , (8.25)

o(cly>) = coly> (B.26)

(cplc)o = aploc (B.27)

(® + o = o>+t , (B.28)

<x|(® + ¥) = <x|® + <x|¥ |, (8.29)
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(00) x> = oY) , (8.30)
and <x| (%) = (<x]O)r . (B.31)
However, we do not necessarily have commutation of operators;

wrve . _ (B.32)
Note that all of the properties (B.6) through (B.32) are quite general, and
beginning with equations 1ike Equation (B.1) can be derived for any field. The
critical properties (B.2) to (B.4) depend on the definition chosen for the inner

product.

We now define the length |¢] of a vector |¢> or <¢| byB2

o] = <ple>¥ . (B.33)
If all vectors have a finite length, then Equations (B.2) through (B.33) define
a Hilbert space. If in addition, our definition of the inner product is such

that the rules (B.2) to (B.4) apply, we must have:B2

leol = |cliel | (8.34)

ol >0 ,46¢t0, (B.35)

|<ole>] < lollwl (B.36)

lo + vl < |o + lw| , (8.37)

6 -l =0 , (B.38)

l6-wl>0,0t4 , (8.39)

and

l6 -wl + lo-xl>»l6-x . (B.40)

Equations (B.34) through (B.40) define a Euclidian vector space.

From Equations (B.13) to (B.21) we see that we must also have

<p|(cle>) = c<ole> (B.41)

| (ler + |x>) = <dle> + bl (B.42)

(<d| + @) lx> = <dlx> + awl> . (8.43)
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These Equations (B.41) to (B.43), as well as many of the equations above are

821

given as postulates by Fujita, but we see that they follow directly from the

properties of fields and our definition (B.5).
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APPENDIX C

HYPERCOMPLEX DESCRIPTION AND COUPLED FIELDS

We now elucidate the incongruous situation which occurs whenever we have
first-order time or space derivatives in our equations. This occurs, for
exaipIe,'uhen we juxtapose the equations of motion for the ¥ and ¥ fields or
the A and A fields, and is most evident in the disquieting form of Equations

{(2.38) and (2.39) in Part I:

Sh

Y= -

0o | (C.1)

and

v = 7kW’ - W-n'k . (C.2)

We may find some relief from the unfamiliar appearance of such equations by

noting that the adjoint fields, ¥ , defined by
¥ =y c.3
A N ’ ( : )

where L/ is a suitable hypercomplex number, behave differentiy than the more
familiar fields, such as w*. The use of hypercomplex numbers is common in
particle physics, where they are used in a four-dimensional context to describe
degrees of freedom of the system, such as spin, that are not explicitly manifest
in the equations of motions. The physics underlying the use of hypercompliex

numbers in our equations is not yet clear, but a hypercomplex description gives

" us extra freedom to achieve a fully self-consistent system of equations. We

first give a brief review of hypercomplex numbers, and then illustrate how they

may be used to deal with anomalies in the equations of motion.

Hypercomplex numbers are an extension of complex numbers and are often

represented by matrices, as their multiplication table can be illustrated by
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multiplication of the appropriate uatr-ic:es.c1 In our context, they are under- %
. ’

" stood to operate in a four-space apart from the space-time space described
sbove. We are especially interested in four such numbers,
Tor Yqr Y0 Y3 =Yg TR Y, (C.4) oy

R

which we will now associate with the time and space derivative 2
Ny

as follows:
) _ -3
Bpr 3 = Vodpr My - (C.6) =3
N
‘ ~)

We have a wide degree of latitude in choosing matrices to describe the numbers
yu; the choice will rest on those aspects of the system we wish to h-igh'h‘ght.c2 f.
v ..I

The Pauli-Dirac representation: o
. P S -
’Io = T | ’ (C.7) : -

N
P - \ Y
o Ny

'Yk = 7 ' (C.8) ._

where the 0. are the Pauli spin matrices, o
1 i 1 e

g = , O = , 0 = - , (C.Q) i
1 1 2 i 3 1 K

is the most commonly used system in particle physics, and emphasizes parity
i‘
conservation. The Weyl representation: -
! 4 (C.10) ‘ ]
= . = , . *. 4

o " s LA :

is also common to particle physics, especially when considering the conservation ::
of chirality.
;
-~

Ka

-,
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We will define a representation that will emphasize symmetry properties

under time reversal:

el
] - ’ ] . .
Yo" {3 L 3
We find
2. 1 1 (C.12
Y = - == - ’ .1
0 7 ] . . ’
2 [ 02 2 ] =1 (C.13)
" o | 7 |
and
Yoyk == ‘Yk‘fo . ' (C.14)

We now postulate a'pair of fields ¢ and X, coupled by the first-order

hypercomplex equations.cz'c3
1
(g3 *+ 7 3,)9 = D(¥3, - 73 )13, (¢ - x) . (C.15)
and
(793, — 7 3, )x = -D(voat + AN (0 - x) . (C.16)

Operating on the first of these equations by Yoat + cykax and on the second by

Yol * SViedy

2 2.2 1
(3t c Bx)¢ = ID(B 27k7°3x3t +C 3 )yka (¢ - x) (C.17)

and

2 2.2, 1.2 2.2,
(3 - 3 )x = ‘(at * 27, 703.3, + €)Y (¢ - x) . (C.18)
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Subtracting Equation (C.18) from Equation (C.17), leads to

2 2.2
(at -c ax) (¢ - xX) = - D"k"o"kaxatax(‘ - X)

= D’oaxatax(‘ -x) . (C.19)
If wa now make the connection
. - ‘
v (-x ) (C.20)

we retrieve our equation of motion for ¥ corresponding to L*:

2

(3,

X tx

From Equation (C.21) we find the corresponding Equation for OA; we take the

hermetian conjugate of Equation (C.21) :

2 2.2, & *
(at c ax)v = oaxataxv Yo (C.22)
and multiply on the right by Ypr I1f we choose LA such that
we obtain
2 2.2\~ -
(3 - ¢ ax)w = - D323 ¥y, - (C.24)

Note that the contrasting forms of Equations (C.21) and (C.24) depend on the use

of hypercomplex numbers and the relation (C.23). A suitable choice for L is

(123]
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- 2.2
-c ax)v = 9103 9.3 ¥ . (C.21)
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This choice yields the relations -

Tola ® [ ! ] A A (C.25) \

and .z
1 (c.28) ;

Yalk ® = %' * Y e -8
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APPENDIX D

THE SCALAR STRESS TENSOR

Since the Lagrangian density contains second-order derivatives of the

fields, it is necessary to extend the standard derivation of the stress-energy

- tensors. Denoting general derivatives of the fields ¢ and ; by *a and ;a' th

variation in the Lagrangian density, &£, is given by

&f aw + Z -——aw +« Yy gﬁ-—aw + adjoint terms.

», v vp vp vp

In the following discussion, specific mention of the adjoint terms will be

dropped, i.e., the existence of parallel adjoint terms will be implied.

(D.1)

From

Appendix A, the minimum in the variation in satisfies an equation similar to

that of (A.12):

] 0= Lo (i)u- £Lu

where X, is one of the components of the four vector
X = (r,t)

Substitution of Equation (D.2) in Equation (D.1) gives
6£-Z-['a‘£—w+f ]

If the transformations of the fields are such that
¥(x) - ¥'(x) = $(x) + Sp(x) ,
and
- ¥(x) - 0;(1) = *p(x) + th(x) '

then the total variation in the fields, including transformation to new

coordinates will be gisen by

8. W(x) = ¥'(x) - ¥(x),

Ly 5 -»1v'."~-‘,.','. o L LI P
I*' \- \\lﬁ - J‘J “.'. "{‘.'-A’n.' . e e ,:‘. P I-"".-’Nf_-'

‘!\I

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

(D.T)

--------
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and

sy¥,(x) = ¥l (x') - ¥ (x).

Consequently,
s(x) = B¥(x') + E %‘,Tvcx, :

and

o
Tw(x)=a¢v(x)+2—25x .

Substituting Equations (D.9) and (D.10) into Equation (D.4) yields
7 2 (2L, _J_ 3L 5 ]
Lo (G- I3 ) G % * Do) ™,

The coefficient of axv in Equation (D.11) is the tensor Tvc

(3.10) of Part 1. For pure translations 6T of ¥ and *p equals zero and

Equations (3.1) to (3.4) give Equations (3.16) and (3.17).

Al

.f;- Y, ‘J-'-l' N
.'...OJl.' B

(D.8)

(D.9)

(D.10)

(D.11)

given in Equation
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- APPENDIX E

) x4 =0

H =N +H K
I 1 2 3

’

where

H#q = oc? (VXA' - VxA) e (Wy ¥ *. vy V)

gl A\ (Viw - 3
H#,y = ecz(VxAvo + Y IA) (W - W),

ami.l/3 is the same alez in Section 2.

E.1 Revised Canonical Transforms

We first note that
ry - c2 t t
Vo - W = ig—p-..,—q[(p + q)(ngnp - {pSq)

- tet
+ (p - q)(n'¢ *"pfq)] ’

and

P nqp

WY ¥ by W ‘—‘ﬁu s qu_)n'n + (pu, +
o o vogwq P, + Q@ Inong + (P

tet
+ (p"'np + wcq)(np(q + np(q)]

In the special case where the approximation of constant vorticity,

(E.1)

may be made, the interaction Hni]tonian,.l/l, can be written as

(E.2)
(E.3)
(E.4) ¥
(E.5)
f
¥a)pta
(E.6)




Therefore,

X
[ ]

s :
1 Idr,¢1 N

-ivy p 3
= L — 2 - f
2 Ecu Y ow Ikx(.k .E)

8c” ok q _
At
. + A
{(q + k)‘-”nq-rk + qwnq]nq,knq : !
.
t ¢ s'
- [(q + k)w +qu,. KT _C_ _
. {qtk {q a+k q N
i
+ fqu_ - (q+ Kk, Inl :
nq {q+k’"q a+k .
|
- toot t
+ [(_q + k)'-"nq*k qﬂ(q]"qm(a (E.T) s
Proceeding in the same vein, we find -
3 .
Hz = [ dr #y-. o
~
Y
o,y /T S
a 2, —=w_ kx(a, - at)+(2q + k) -4
8c> °§E’”q Py ok kT R
t t .t t X
My en, +n_$_+nC __ +€¢C ) . (E.8) "
q+k'q q+k q q q+k q g+k )
It is convenient to add Equations (E.7) and (E.8) to obtain a quantity denoted ::'
N <+
by H‘: !
H‘ = H1 + "2 “_’_
e
‘-
-icy -
- 2 5y ] kx(a, - ah) .
4/5 gk w Yw k
q ak .‘
N
*.

(128]
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+
* (Anq*k"l

+ .t t+
qQ + B"q+k(- + qu(__ + 0 ¢ ) ’

q q+k q q+k

where the vector functions of q and k, A, B, C, and D, are given by

A(q, k) = (29 + k) +‘(q + k)“hq+k M

B(q, k) = (29 + K)u_ + (q ¢+ k)m,wk S,

Clq, k) = (29 + k), + Weq - @Koy
and

0(q, k) = (2q + kKla, - Weq - (q + k)”(q+k .

The required “"canonical" transforms needed to diagonalize H, are

4

= - - t
. ci [(Qq+ Wt q)nq + (Qq © ? ﬂcqq){qJ/Vﬁuq ,
t + - -
cq [(Qq+ w3t q)nq + (Qq 0,9 u(qq)(a]/fibq ,
= - - 1’,/_
dq [(Qq uakq wnqq)nq + (Qq+ ”akq + u(qq)(a]/ 2Qq ’

and

t . - t
dq = [(0g" 948 = wpqaing + (Qp+ w9 + weqa)C IV

q -

The resulting contribution to HB will lead to a Hamiltonian of the form

icy
= - ———9 - at L - dt
Hy z[“ak'k'k pr- o (@ .E) E(cq#kcq ddekdq) /¥

ta - - at -
. E[uak.k.k ify (& 7)Y (n

L Moo nqu)/wa

(E.9)

(E.

(E.

(E.

(E.

(E.

(E.

(E.

(E.

(E.

10)

11)

12)

13)

14)

15)

16)

17)

.18)

19)
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E.2 Order Parameter

An alternative means of gaining insight into the behavior of the flow system

is to examine the behavior of variables analogous to the model of the lasing

E1-E6 ET-E14

transition studied by Haken and others. In this formulation, a

variable related to .k and a; at low values of k will behave much like an order

parameter in the Landau-Ginzberg model of critical behav-ior.ms'E18 We begin

with a truncated Hamiltonian, omitting H . and H3 for the time being. We find

NL

the following equations of motion for the normal modes of HO:

+
G

+q * B"q+kf1 son¢__+¢Tc 1 (E.20)

-iw_ a_ + f_(kxe)Y[An
kg kg 3 Yak  qak

t . +
* B SS t oS+ DXK ], (E.21)

at = i al &)T{Ant
al = iw_al + f (kxe)I{An' .n
k ak 'k k +K

q ¢ qa Yok qak

q

n.=i0 n +Y fkx(a -alj(an . +8¢H 1, (E.22)
q ngq o koK G-k K

°t L + tyrant
nt = iw_nl - Y f kx(a, - al)[An +CC__1 ., (E.23)

q g o kTk o TR ek P

¢ a - - atyignt

{i 0o * E f x(a, ai)[an+k + o(a] . (E.24)
and

PRI - at t

ca 1wkq(3 + E floc(a, ’E)[C"q+k (L 0 I (E.25)

Equations (E.22) to (E.25) are now used to find the equations of motion for

qu and “CQ' as well as for two new variables, Aq and aq, defined by

oq = nq(a (E.26)

- |
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Note that

[ngrTqe] = °§5§.q' , " (E.28)
[nq,a;,] = “;°q,q' , (E.29)

and

fo_.ot,1 =NGs

. £.30
qQ'q q9 9.9' : ) ( )

The equation of motion for Nq is obtained by multiplying Equation (E.22) by n;

and Equation (E.23) by nq, and adding. We adopt the convention that the

appearance of terms with k in their subscripts implies a sum of terms with both

t|k]. we find

n_ =Y fke(a - at)e(en ¢ - Bnfct 1. (E.31)
nq E K K k a g+k q q+k

Similarly, letting

flox(a, - a;), (E.32)

=Y F elCCn., -8M 1 , (E.33)
¢ k k 3 q+k a q+k

Qe
[ ]

-icqo_ + Y F ofAC_n. . +B(¢T ¢ +nf n)e+Onc] ,  (E.34)
q K k q q-k a+k q q+k'q q

icqo - L F otant ¢t e cctc__+ntn_ ) +omfct 1 . (E.38)
q kk q+kq 3 ok q q+k q'k-q

-----------



-
l&‘.‘ﬁ‘ 3'l v A%\ .

»
1.

We now take the limit k-0 and find with

ﬂql nnq'l' ﬂcq

the following approximate equations:
L J o - : f
nq = 118 FK(COq Boq),
q

and

q

Equations (E.37) to (E.39) can be used as the starting point for two
different treatments of critical behavior.

transition to chaos similar to that of the Lorentz model of Benard convection.

g = -icqo, + 418 F o [(A+D)g, + Bn ]

3t = icaot - 1i . yot
g = 1cqaq &13 Fk [(Mo)aq + qu]

(E.36)
t )
(E.37) '
' (€.38) b
(E.39)
The first is a computer study of a E
E19,E20 .

The second parallels a model of the lasing transition studied extensively by

Haken.E 1 E8

(132)

.-lglcn L R )
ot ety Lo Lo (s

™R Wy N W
o > e r‘-“

o % s e e

- e g, an



'::.’.'}.P..'

Q:.P
REFERENCES ;;
[ 8
E1. Hermann Haken, Reviews of Modern Physics, 47, (1) (1975). =
) : A
' E2. H. Haken and W. Weidlich, p. 630 in Quantum Optics, R. J. Glauber, ed., s
(Academic Press, New York, 1969). 1;

LY

o,
E3. Hermann Haken, Light, Vol. 1, (North Holland, New York, 1981). o0
E4. H. Haken and W. Weidlich, Zeitschrift fir Physik, 181, 96, (1964). ' N
E5. Hermann Haken, p. 1 in Nonequilibrium Cooperative Phenomena in Physics and :,
Related Fields, 'Manuel G. Velarde, ed., (Plenum Press, New York 1984). >
O
i,

E6. Hermann Haken, p. 493 in Photon Correlation and Light Beating Spectroscopy, e
H. Z. Cummins and E. R. Pike, eds., (Plenum Press, New York, 1977). ;yv

._:,.

E7. William H. Louiswell, Radiation and Noise in Quantum Electronics, A
(McGraw-Hi11, New York, 1964). ;{:
: ol
R4,

E8. Herwig Sauermann, Zeitschrift fiir Physik, 188, 480 (1965). x
: ~

E9. William H. Louiswell, Quantum Statistical Properties of Radiation, (John ~
Wiley and Sons, New York, 1973). ;‘;j_
AP
E10. Melvin Lax, Phys. Rev., 145 (1), 110 (1966). oo
£ 7
E11. Melvin Lax, IEEE J. Quant. Electron, QE-3, (2) 37 (1967). oy
€12. Melvin Lax and William Louiswell, IEEE J. Quant. Electron., QE-3, (2), T
p. 4T (1967). -3
Q_‘
E13. V. DeGiorgio and Marlan 0. Scully, Phys. Rev. A, 2, (4) 1170 (1970). 2%
E14. Quantum Optics, R. J. Glauber, ed., (Academic Press, New York, 1969). o
.:;.

E15. L. D. Landau and E. M. Lifshitz, Statistical Physics, (Pergamon Press, 3:
London; Addison-Wesley, Reading, 1958). ;Q:

E16. Shang-Keng Ma, Modern Theory of Critical Phenomena, (W. A. Benjamin, _"
Reading, 1976). N

E17. Shang-Ekng Ma, Statistical Mechanics, (World Scientific Press, Philadelphia, :QE
PA, 1985). RS

R

E18. Critical Phenomena, F. J. W. Hahne, ed., (Springer-verlag, New York, 1983). a
b\
E19. Heinz Georg Shuster, Deterministic Chaos, (Physik-Verlag, Deerfield Beach, ::r
1984) . e
l.$#

€20. Edward N. Lorenz, J. Atmospheric Science, 20, 130 (1963). -
i.\l
.-::.r
ﬂ(j

S

[133)

\._

>

LR R P I N A I R N N A PR RSN
N S R N SR AT e e A e P A am L o St TR S
T e e N N e e N N TN SINCN :



LR R o = N

- e i

" Yol "l }

|
[ A
I.r.l.\ l’ .

APPENDIX F

TRANSFORMATION OF THE INTERACTION HAMILTONIAN

In this appendix, we show how Hamiltonians such as H,6 given in Equation

[}
(3.1) may be transformed to the form given in Equation (3.6). The treatment

follows closely that given by Kittel for the electron-phonon -interact'ion.F1
Consider the truncated Hamiltonian H . given by a diagonal basis Hamiltonian

H. and a perturbation part H':

D
if' .,
HT = HD " @ H ' (F.1)
q
where for example
f
HD = w  aa, (F.2)
and
' -
H = kx(ak a )°q+k q - (F.3)

The key step in transforming Equation (F.3) is to postulate the existence of a

function S such that

$ 2 [S,Hy] = - ﬁfl M. (F.4)

q

Equation (F.4) can be shown to be satisfied using the interaction picture.F1

Although we are discussing a fully classical system, the concept of Schroedinger,
Heisenberg, and interaction picture can still be appliesz, as implied by the

discussion in Appendix B.

Integrating Equation (F4) gives

S(o) = - ;—- [ dt H'(t) . (F.5)
q -0
[134)
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Substituting Equation (F.5). into Equation (F.4) and then substituting the

resulting form of Equation (F.4) into Equation (F.1) gives

TRAR

-_.'!

\ LIS

s

fx l'.’{."¢ .-‘\(\ A ]

A AARY

el gt P R g g o
LR =

e

..-Tﬂ,_
SR IR P Py

Y
if'
Hy = Hy = 5o [H'(0).S(0)] (F.6)
or
.2
Hy = Hy + —j dt[H'(t),H'(0)] . (F.T)
Zu
q
- From Equation 3.1
f' = Yofk . (F.8)
Therefore, the pcrturbative'tern in Equation (3.1) in the fields Cq can be put
in the form (72 = -1)
o
2
’ _5_ + t S NN 4
He 202 f [kx[-k(t) '-i(t”"q-m(t’cq(t)"""(‘k' .E')c“'*"'cq' ]-(F.s)
q
This may be written as
A 2 o HWeqek™Yeq’t + t
H' = S f K.} (O 4 o ©9 et ee, e,
c 2 uh 0 qek q q'+k’' q
-iw_ t iw, ,t
ak t ak'
a__ ] + [a_, .] e ) . (F.10)
([‘k e
The Fourier transformation yields, upon contracting the Poisson brackets,
+ + + t
L1 kfk 2fc +k%a%a’-kCa' Sg#kc Cq'-kCq’
He=2 (o w -w__*tw, O -0 - . (F.11)
q cq+k cq ak cq+k cq ak
[(138)
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Performing the addition and making a similar transformation for the d fields

“y %3 S %y W -

gives Equation (3.6).

One difficulty occurs in that there are several nonlinear contributions to H

of the form described above. Transformations using functions S of the type

YW W W

described in Equations (F.4) and (F.5) must be applied to the various nonlinear
contributions simultaneously. This can be achieved through the use of projec- -

tion operators, again using the concepts described in Appendix B.
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APPENDIX G
In this appendix, we will display the steps required to generate the
specific term shown in Equation (4.21) of Part III. We begin with the set of
Equations (4.7) to (4.12). For the particular term of interest, we replace the

n*n term in Equation (4.7) with expressions (4.9) and (4.10). We find that

L €;19K1A9(- k)Nt (a*k)n(q) =
L €,,%A,(a.k)687 (a8 (@)F" (a+k)F"(q)
q e

- n nt n "
E E € 1aK1A (3-K)G (a+k)GT (Q)F " (qek) F (K" e k

[a (k") - al(k")I[A_(q.k")n(q+k") + B_(a.k")¢(T(qek")]

t(

. g E'ei,,k,A_(q.k)s"*(q)e"(q+k)r"(q)f(k')enqup

[Gq(k') - 8;(k')][ A, (a+k, k' )n(qrk-k') + Bn(Q*k.k')(*(Q*k*k') )

+ 0( f2(k) ). (6.1)
In this expréssion we will examine the second term on the right side, looking at
the tery proportional to Ar. Using Equation (4.9) once again, but this time

truncating at the linear term, we find

I T #(k*)6"(a+k)6" (2)6" (q+k")F" (qek)F" (qek”) )

q k"
" " N
€itm 1A (q')‘rst s t(k )A (q.k") .
+ the same term with at(k") - a:(k"). (G.2) '
[137) :
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We will now take advantage of this equation, snd employ the relation

| ' <" (qek)FT(qek")> = 8(qek-q-k")

t
= 8(k-k") (6.3) 3

b

leaving us with, sfter the sum over k" is carried out, 4
< f(k)k1¢r,t [;G"(M)Gm(qmn(ﬂ*)ﬂ (Q.R)A (q.k) ] (k) > . (G.4) 4

K.

replacing a, with a lowest order contribution, we find that Equation (4.7) -
becomes .
< aylk) > < [ ij"" * ¢

n nt oval .
j"‘"m. 1€rsths ); G7(q#k)G"" (q)G" (q+k) 2
E
_ f(k)A.(q.k)f(k)Ar(q.k)G:t(k) ]F:(k) > . ’ (G.5)

Thus, we write to Towest order, -‘
< a,k) >= <G, . (k) F,(k) + ...
I (LA (6.6) R

Y

where a:j(k) is now given by Equation (23). Also, it is seen in Equation (4.5) S
that the sum over internal wave-vectors contributes a term of the form Ly
' n nt, _.on N

(k) = E A (a.K)A (q,k)G"(a,k)B"" (q)8" (q+k) . (6.7) N
o

N

r
r

~d

;
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